Skip to main content

Advertisement

Log in

Clinical significance of serum interleukin-29, interleukin-32, and tumor necrosis factor alpha levels in patients with gastric cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

Many studies suggested that cytokines interleukin (IL)-29, IL-32, and tumor necrosis factor alpha (TNF-α) are implicated in the pathogenesis of malignancies. The purpose of this study was to determine the clinical significance of the serum levels of IL-29, IL-32, and TNF-α in gastric cancer (GC) patients. Fifty-eight GC patients and 20 age- and sex-matched healthy controls were enrolled into this study. The median age at diagnosis was 59.5 years (range 32–82 years). Tumor localization of the majority of the patients was antrum (n = 42, 72.4 %), and tumor histopathology of the majority of the patients was diffuse (n = 43, 74.1 %). The majority of the patients had stage IV disease (n = 41, 70.7 %). Thirty-six (62.1 %) patients had lymph node involvement. The median follow-up time was 66 months (range 1 to 97.2 months). The baseline serum IL-29 concentrations were not different between patients and controls (p = 0.627). The baseline serum IL-32 and TNF-α concentrations of the GC patients were significantly higher (for IL-32, p = 0.014; for TNF-α, p = 0.001). Gender, localization, histopathology, tumor, and lymph node involvement were not found to be correlated with serum IL-29, IL-32, and TNF-α concentrations (p > 0.05). Patients without metastasis (p = 0.01) and patients who responded to chemotherapy (p = 0.04) had higher serum IL-29 concentrations. Patients older than 60 years had higher serum IL-32 (p = 0.002). Serum IL-29, IL-32, and TNF-α levels were not associated with outcome (p = 0.30, p = 0.51, and p = 0.41, respectively). In conclusion, serum levels of IL-32 and TNF-α may be diagnostic markers, and serum IL-29 levels may be associated with good prognosis in patients with GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. GLOBOCAN (2012) Estimated cancer incidence, mortality and prevalence worldwide in 2012.

  2. Leaman DW. Mechanism of interferon action. Prog Mol Subcell Biol. 1998;20:101–42.

    Article  CAS  PubMed  Google Scholar 

  3. Pfeffer LM, Dinarello CA, Herberman RB, Williams BR, Borden EC, Bordens R, et al. Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Res. 1998;58:2489–99.

    CAS  PubMed  Google Scholar 

  4. Fujie H, Tanaka T, Tagawa M, Kaijun N, Watanabe M, Suzuki T, et al. Antitumor activity of type III interferon alone or in combination with type I interferon against human non-small cell lung cancer. Cancer Sci. 2011;102:1977–90.

    Article  CAS  PubMed  Google Scholar 

  5. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64.

    Article  CAS  PubMed  Google Scholar 

  6. Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202:8–32.

    Article  CAS  PubMed  Google Scholar 

  7. Kotenko SV, Gallagher G, Baurin VV, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4:69–77.

    Article  CAS  PubMed  Google Scholar 

  8. Dumoutier L, Lejeune D, Hor S, Fickenscher H, Renauld JC. Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochem J. 2003;370:391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Witte K, Witte E, Sabat R, Wolk K. IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev. 2010;21:237–51.

    Article  CAS  PubMed  Google Scholar 

  10. Zitzmann K, Brand S, Baehs S, et al. Novel interferon-lambdas induce antiproliferative effects in neuroendocrine tumor cells. Biochem Biophys Res Commun. 2006;344:1334–41.

    Article  CAS  PubMed  Google Scholar 

  11. Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte JM, et al. IL-28A and IL-29 mediate antiproliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic IL-28A expression. Am J Physiol Gastrointest Liver Physiol. 2005;289:G960–8.

    Article  CAS  PubMed  Google Scholar 

  12. Meager A, Visvalingam K, Dilger P, Bryan D, Wadhwa M. Biological activity of interleukins-28 and -29: comparison with type I interferons. Cytokine. 2005;31:109–18.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA. Interleukin-32: a cytokine and inducer of TNF-alpha. Immunity. 2005;22:131–42.

    CAS  PubMed  Google Scholar 

  14. Netea MG, Azam T, Ferwerda G, Girardin SE, Walsh M, Park JS, et al. IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism. Proc Natl Acad Sci U S A. 2005;102:16309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y, Wang L, Pappan L, Galliher-Beckley A, Shi J. IL-1beta promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer. 2012;11:87.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Egberts JH, Cloosters V, Noack A, Schniewind B, Thon L, Klose S, et al. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2008;68:1443–50.

    Article  CAS  PubMed  Google Scholar 

  17. Sunaga N, Imai H, Shimizu K, Shames DS, Kakegawa S, Girard L, et al. Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int J Cancer. 2012;130:1733–44.

    Article  CAS  PubMed  Google Scholar 

  18. Kollmar O, Scheuer C, Menger MD, Schilling MK. Macrophage inflammatory protein-2 promotes angiogenesis, cell migration, and tumor growth in hepatic metastasis. Ann Surg Oncol. 2006;13:263–75.

    Article  PubMed  Google Scholar 

  19. Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28:2940–7.

    Article  CAS  PubMed  Google Scholar 

  20. Yu X, Zhou B, Zhang Z, Gao Q, Wang Y, Song Y, Pu Y, Chen Y, Duan R, Zhang L, Xi M. Significant association between IL-32 gene polymorphisms and susceptibility to endometrial cancer in Chinese Han women. Tumour Biol. 2015.

  21. Seo EH, Kang J, Kim KH, Cho MC, Lee S, Kim HJ, et al. Detection of expressed IL-32 in human stomach cancer using ELISA and immunostaining. J Microbiol Biotechnol. 2008;18:1606–12.

    CAS  PubMed  Google Scholar 

  22. Ishigami S, Arigami T, Uchikado Y, Setoyama T, Kita Y, Sasaki K, et al. IL-32 expression is an independent prognostic marker for gastric cancer. Med Oncol. 2013;30:472.

    Article  PubMed  Google Scholar 

  23. Sorrentino C, Di Carlo E. Expression of IL-32 in human lung cancer is related to the histotype and metastatic phenotype. Am J Respir Crit Care Med. 2009;180:769–79.

    Article  CAS  PubMed  Google Scholar 

  24. Nishida A, Andoh A, Inatomi O, Fujiyama Y. Interleukin-32 expression in the pancreas. J Biol Chem. 2009;284:17868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kang YH, Park MY, Yoon DY, Han SR, Lee CI, Ji NY, et al. Dysregulation of overexpressed βα in hepatocellular carcinoma suppresses cell growth and induces apoptosis through inactivation of NF-κB and Bcl-2. Cancer Lett. 2012;318:226–33.

    Article  CAS  PubMed  Google Scholar 

  26. Yousif NG, Al-Amran FG, Hadi N, Lee J, Adrienne J. Expression of IL-32 modulates NF-κB and p38 map kinase pathways in human esophageal cancer. Cytokine. 2013;61:223–7.

    Article  CAS  PubMed  Google Scholar 

  27. Park JS, Choi SY, Lee JH, Lee M, Nam ES, Jeong AL, et al. Interleukin-32beta stimulates migration of MDA-MB-231 and MCF-7 cells via the VEGF-STAT3 signaling pathway. Cell Oncol. 2013;36:493–503.

    Article  CAS  Google Scholar 

  28. Tsai CY, Wang CS, Tsai MM, Chi HC, Cheng WL, Tseng YH, et al. Interleukin 32 increases human gastric cancer cell invasion associated with tumor progression and metastasis. Clin Cancer Res. 2014;20:2276–88.

    Article  CAS  PubMed  Google Scholar 

  29. Zeng Q, Li S, Zhou Y, Ou W, Cai X, Zhang L, et al. Interleukin-32 contributes to invasion and metastasis of primary lung adenocarcinoma via NF-kappaB induced matrix metalloproteinases 2 and 9 expression. Cytokine. 2014;65:24–32.

    Article  CAS  PubMed  Google Scholar 

  30. Choo MK, Sakurai H, Kim DH, Saiki I. A ginseng saponin metabolite suppresses tumor necrosis factor-alpha-promoted metastasis by suppressing nuclear factor-kappaB signaling in murine colon cancer cells. Oncol Rep. 2008;19:595–600.

    CAS  PubMed  Google Scholar 

  31. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, et al. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest. 2008;118:560–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vendramini-Costa DB, Carvalho JE. Molecular link mechanisms between inflammation and cancer. Curr Pharm Des. 2012;18:3831–52.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu F, Zhao H, Tian X, Meng X. Association between tumor necrosis factor-α rs1800629 polymorphism and risk of gastric cancer: a meta-analysis. Tumour Biol. 2014;35:1799–803.

    Article  CAS  PubMed  Google Scholar 

  34. Barrera L, Montes-Servín E, Barrera A, Ramírez-Tirado LA, Salinas-Parra F, Bañales-Méndez JL, et al. Cytokine profile determined by data-mining analysis set into clusters of non-small-cell lung cancer patients according to prognosis. Ann Oncol. 2015;26:428–35.

    Article  CAS  PubMed  Google Scholar 

  35. Naumnik W, Naumnik B, Niewiarowska K, Ossolinska M, Chyczewska E. Novel cytokines: IL-27, IL-29, IL-31 and IL-33. Can they be useful in clinical practice at the time diagnosis of lung cancer? Exp Oncol. 2012;34:348–53.

    CAS  PubMed  Google Scholar 

  36. Guenterberg KD, Grignol VP, Raig ET, Zimmerer JM, Chan AN, Blaskovits FM, et al. Interleukin-29 binds to melanoma cells inducing Jak-STAT signal transduction and apoptosis. Mol Cancer Ther. 2010;9:510–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maher SG, Sheikh F, Scarzello AJ, Romero-Weaver AL, Baker DP, Donnelly RP, et al. IFNalpha and IFNlambda differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biol Ther. 2008;7:1109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sakitani K, Hirata Y, Hayakawa Y, Serizawa T, Nakata W, Takahashi R, et al. Role of interleukin-32 in Helicobacter pylori-induced gastric inflammation. Infect Immun. 2012;80:3795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fukamachi T, Ikeda S, Saito H, Tagawa M, Kobayashi H. Expression of acidosis-dependent genes in human cancer nests. Mol Clin Oncol. 2014;2:1160–6.

    PubMed  PubMed Central  Google Scholar 

  40. Suga H, Sugaya M, Miyagaki T, Kawaguchi M, Fujita H, Asano Y, et al. The role of IL-32 in cutaneous T-cell lymphoma. J Invest Dermatol. 2014;134:1428–35.

    Article  CAS  PubMed  Google Scholar 

  41. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441:431–6.

    Article  CAS  PubMed  Google Scholar 

  42. Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation and cancer. J Clin Invest. 2007;117:1175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tahara E. Molecular aspects of invasion and metastasis of stomach cancer. Verh Dtsch Ges Pathol. 2000;84:43–9.

    CAS  PubMed  Google Scholar 

  44. Conti P, Youinou P, Theoharides TC. Modulation of autoimmunity by the latest interleukins (with special emphasis on IL-32). Autoimmun Rev. 2007;6:131–7.

    Article  CAS  PubMed  Google Scholar 

  45. Calabrese F, Baraldo S, Bazzan E, Lunardi F, Rea F, Maestrelli P, et al. IL-32, a novel proinflammatory cytokine in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;178:894–901.

    Article  CAS  PubMed  Google Scholar 

  46. Nold-Petry CA, Rudloff I, Baumer Y, Ruvo M, Marasco D, Botti P, et al. IL-32 promotes angiogenesis. J Immunol. 2014;192:589–602.

    Article  CAS  PubMed  Google Scholar 

  47. Yang Y, Wang Z, Zhou Y, Wang X, Xiang J, Chen Z. Dysregulation of over-expressed IL-32 in colorectal cancer induces metastasis. World J Surg Oncol. 2015;13:146.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kagoya Y, Yoshimi A, Kataoka K, Nakagawa M, Kumano K, Arai S, et al. Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity. J Clin Invest. 2014;124:528–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu Y, Zhou BP. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;102:639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kabir S, Daar GA. Serum levels of interleukin-1, interleukin-6 and tumour necrosis factor-alpha in patients with gastric carcinoma. Cancer Lett. 1995;95:207–12.

    Article  CAS  PubMed  Google Scholar 

  51. Macrì A, Versaci A, Loddo S, Scuderi G, Travagliante M, Trimarchi G, et al. Serum levels of interleukin 1beta, interleukin 8 and tumour necrosis factor alpha as markers of gastric cancer. Biomarkers. 2006;11:184–93.

    Article  PubMed  Google Scholar 

  52. Roselli M, Guadagni F, Martini F, Spila A, Mariotti S, D’Alessandro R, et al. Association between serum carcinoembryonic antigen and endothelial cell adhesion molecules in colorectal cancer. Oncology. 2003;65:132–8.

    Article  CAS  PubMed  Google Scholar 

  53. Wang YY, Lo GH, Lai KH, Cheng JS, Lin CK, Hsu PI. Increased serum concentrations of tumor necrosis factor-alpha are associated with disease progression and malnutrition in hepatocellular carcinoma. J Chin Med Assoc. 2003;66:593–8.

    PubMed  Google Scholar 

  54. Forones NM, Mandowsky SV, Lourenço LG. Serum levels of interleukin-2 and tumor necrosis factor-alpha correlate to tumor progression in gastric cancer. Hepatogastroenterology. 2001;48:1199–201.

    CAS  PubMed  Google Scholar 

  55. Szaflarska A, Szczepanik A, Siedlar M, Czupryna A, Sierzega M, Popiela T, et al. Preoperative plasma level of IL-10 but not of proinflammatory cytokines is an independent prognostic factor in patients with gastric cancer. Anticancer Res. 2009;29:5005–12.

    CAS  PubMed  Google Scholar 

  56. Guo L, Ou JL, Zhang T, Ma L, Qu LF. Effect of expressions of tumor necrosis factor α and interleukin 1B on peritoneal metastasis of gastric cancer. Tumour Biol. 2015.

  57. Kim S, Choi MG, Lee HS, Lee SK, Kim SH, Kim WW, et al. Silibinin suppresses TNF-alpha-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules. 2009;14:4300–11.

    Article  CAS  PubMed  Google Scholar 

  58. Stanilov N, Miteva L, Dobreva Z, Stanilova S. Colorectal cancer severity and survival in correlation with tumour necrosis factor-alpha. Biotechnol Biotechnol Equip. 2014;28:911–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayhan Erturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erturk, K., Tastekin, D., Serilmez, M. et al. Clinical significance of serum interleukin-29, interleukin-32, and tumor necrosis factor alpha levels in patients with gastric cancer. Tumor Biol. 37, 405–412 (2016). https://doi.org/10.1007/s13277-015-3829-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3829-9

Keywords

Navigation