Skip to main content
Log in

Overexpression of SOX2 promotes migration, invasion, and epithelial-mesenchymal transition through the Wnt/β-catenin pathway in laryngeal cancer Hep-2 cells

  • Research Article
  • Published:
Tumor Biology

Abstract

SOX2 is a high-mobility group box containing transcription factor essential for the maintenance of embryonic stem cells. Recent evidence indicates that SOX2 overexpression correlates with metastasis and poor prognosis in patients with laryngeal squamous cell cancer. To investigate how SOX2 contributes to this aggressive phenotype, we introduced the human SOX2 gene into a low SOX2-expressing human laryngeal cancer cell line Hep-2. Cell migration and invasion were determined by the Transwell assay with or without Matrigel coating. The epithelial-mesenchymal transition (EMT)-related markers were assayed by Western blot analysis or immunofluorescence. Our results showed that exogenous expression of SOX2 in Hep-2 cells substantially promoted their migratory and invasive capabilities in culture. Moreover, Hep-2 cells stably overexpressing SOX2 underwent EMT phenotype, as evidenced by mesenchymal morphology, decreased expression of epithelial marker (E-cadherin), and increased expression of mesenchymal markers (N-cadherin, vimentin, fibronectin, and α-smooth muscle actin). Strikingly, Western blot analysis and immunofluorescence also showed that overexpression of SOX2 resulted in substantial increase and nuclear accumulation of β-catenin in Hep-2 cells. However, small interfering RNA targeting β-catenin significantly attenuated the reduced expression of E-cadherin and increased cell migration and invasion abilities in SOX2-overexpressing cells, suggesting that SOX2-induced EMT process, migration, and invasion are dependent on β-catenin activation. Taken together, our findings underscore a novel role for SOX2 in laryngeal cancer migration and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64. doi:10.1126/science.1203543.

    Article  CAS  PubMed  Google Scholar 

  2. Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895–904. doi:10.1038/nm1469.

    Article  CAS  PubMed  Google Scholar 

  3. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90. doi:10.1016/j.cell.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Xu Y, Chen Y, Chen S, Jia X, Sun T, et al. SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/β-catenin signal network. Cancer Lett. 2013;336(2):379–89. doi:10.1016/j.canlet.2013.03.027.

    Article  CAS  PubMed  Google Scholar 

  5. Galera-Ruiz H, Rios-Moreno MJ, Gonzalez-Campora R, Galera-Davidson H. WNT pathway in laryngeal squamous cell carcinoma and nasopharyngeal carcinoma. Acta Otorhinolaryngol Ital Organo ufficiale della Societa italiana di Otorinolaringol Chir Cervicofac. 2012;32(2):122–3.

    CAS  Google Scholar 

  6. Fu Y, Zheng S, An N, Athanasopoulos T, Popplewell L, Liang A, et al. β-Catenin as a potential key target for tumor suppression. Int J Cancer. 2011;129(7):1541–51. doi:10.1002/ijc.26102.

    Article  CAS  PubMed  Google Scholar 

  7. Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. EMBO J. 2012;31(12):2714–36. doi:10.1038/emboj.2012.150.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–42. doi:10.1038/ng.465.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tang XB, Shen XH, Li L, Zhang YF, Chen GQ. SOX2 overexpression correlates with poor prognosis in laryngeal squamous cell carcinoma. Auris Nasus Larynx. 2013;40(5):481–6. doi:10.1016/j.anl.2013.01.003.

    Article  PubMed  Google Scholar 

  10. Benelli R, Monteghirfo S, Vene R, Tosetti F, Ferrari N. The chemopreventive retinoid 4HPR impairs prostate cancer cell migration and invasion by interfering with FAK/AKT/GSK3beta pathway and beta-catenin stability. Mol Cancer. 2010;9:142. doi:10.1186/1476-4598-9-142.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L, et al. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PLoS One. 2012;7(5):e36326. doi:10.1371/journal.pone.0036326.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Shah JP, Karnell LH, Hoffman HT, Ariyan S, Brown GS, Fee WE, et al. Patterns of care for cancer of the larynx in the United States. Arch Otolaryngol Head Neck Surg. 1997;123(5):475–83.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao XD, Zhang W, Liang HJ, Ji WY. Overexpression of miR-155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3. PLoS One. 2013;8(2):e56395. doi:10.1371/journal.pone.0056395.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Pevny LH, Lovell-Badge R. Sox genes find their feet. Curr Opin Genet Dev. 1997;7(3):338–44.

    Article  CAS  PubMed  Google Scholar 

  15. Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells. 2009;27(1):40–8. doi:10.1634/stemcells.2008-0493.

    Article  CAS  PubMed  Google Scholar 

  16. Lu Y, Futtner C, Rock JR, Xu X, Whitworth W, Hogan BL, et al. Evidence that SOX2 overexpression is oncogenic in the lung. PLoS One. 2010;5(6):e11022. doi:10.1371/journal.pone.0011022.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Tung CL, Hou PH, Kao YL, Huang YW, Shen CC, Cheng YH, et al. SOX2 modulates alternative splicing in transitional cell carcinoma. Biochem Biophys Res Commun. 2010;393(3):420–5. doi:10.1016/j.bbrc.2010.02.010.

    Article  CAS  PubMed  Google Scholar 

  18. Bae KM, Su Z, Frye C, McClellan S, Allan RW, Andrejewski JT, et al. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J Urol. 2010;183(5):2045–53. doi:10.1016/j.juro.2009.12.092.

    Article  CAS  PubMed  Google Scholar 

  19. Sanada Y, Yoshida K, Ohara M, Oeda M, Konishi K, Tsutani Y. Histopathologic evaluation of stepwise progression of pancreatic carcinoma with immunohistochemical analysis of gastric epithelial transcription factor SOX2: comparison of expression patterns between invasive components and cancerous or nonneoplastic intraductal components. Pancreas. 2006;32(2):164–70. doi:10.1097/01.mpa.0000202947.80117.a0.

    Article  CAS  PubMed  Google Scholar 

  20. Ye F, Li Y, Hu Y, Zhou C, Hu Y, Chen H. Expression of Sox2 in human ovarian epithelial carcinoma. J Cancer Res Clin Oncol. 2011;137(1):131–7. doi:10.1007/s00432-010-0867-y.

    Article  CAS  PubMed  Google Scholar 

  21. Xu XL, Xing BC, Han HB, Zhao W, Hu MH, Xu ZL, et al. The properties of tumor-initiating cells from a hepatocellular carcinoma patient’s primary and recurrent tumor. Carcinogenesis. 2010;31(2):167–74. doi:10.1093/carcin/bgp232.

    Article  CAS  PubMed  Google Scholar 

  22. Han X, Fang X, Lou X, Hua D, Ding W, Foltz G, et al. Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PLoS One. 2012;7(8):e41335. doi:10.1371/journal.pone.0041335.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29. doi:10.1016/j.devcel.2008.05.009.

    Article  CAS  PubMed  Google Scholar 

  24. Polette M, Mestdagt M, Bindels S, Nawrocki-Raby B, Hunziker W, Foidart JM, et al. Beta-catenin and ZO-1: shuttle molecules involved in tumor invasion-associated epithelial-mesenchymal transition processes. Cells Tissues Organs. 2007;185(1–3):61–5. doi:10.1159/000101304.

    Article  CAS  PubMed  Google Scholar 

  25. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98(18):10356–61. doi:10.1073/pnas.171610498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W, et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem. 2008;283(26):17969–78. doi:10.1074/jbc.M802917200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Natural Science Foundation of Liaoning Province (No.: 201202287).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Hui, L., Wang, Y. et al. Overexpression of SOX2 promotes migration, invasion, and epithelial-mesenchymal transition through the Wnt/β-catenin pathway in laryngeal cancer Hep-2 cells. Tumor Biol. 35, 7965–7973 (2014). https://doi.org/10.1007/s13277-014-2045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2045-3

Keywords

Navigation