Skip to main content
Log in

Accuracy of the Garmin 920 XT HRM to perform HRV analysis

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Heart rate variability (HRV) analysis is widely used to investigate autonomous cardiac drive. This method requires periodogram measurement, which can be obtained by an electrocardiogram (ECG) or from a heart rate monitor (HRM), e.g. the Garmin 920 XT device. The purpose of this investigation was to assess the accuracy of RR time series measurements from a Garmin 920 XT HRM as compared to a standard ECG, and to verify whether the measurements thus obtained are suitable for HRV analysis. RR time series were collected simultaneously with an ECG (Powerlab system, AD Instruments, Castell Hill, Australia) and a Garmin XT 920 in 11 healthy subjects during three conditions, namely in the supine position, the standing position and during moderate exercise. In a first step, we compared RR time series obtained with both tools using the Bland and Altman method to obtain the limits of agreement in all three conditions. In a second step, we compared the results of HRV analysis between the ECG RR time series and Garmin 920 XT series. Results show that the accuracy of this system is in accordance with the literature in terms of the limits of agreement. In the supine position, bias was 0.01, − 2.24, + 2.26 ms; in the standing position, − 0.01, − 3.12, + 3.11 ms respectively, and during exercise, − 0.01, − 4.43 and + 4.40 ms. Regarding HRV analysis, we did not find any difference for HRV analysis in the supine position, but the standing and exercise conditions both showed small modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akselrod S, Gordon D, Ubel FA et al (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222

    Article  CAS  PubMed  Google Scholar 

  2. Baselli G, Cerutti S, Civardi S et al (1987) Heart rate variability signal processing: a quantitative approach as an aid to diagnosis in cardiovascular pathologies. Int J Biomed Comput 20:51–70

    Article  CAS  PubMed  Google Scholar 

  3. Berntson GG, Bigger JT Jr, Eckberg DL et al (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34:623–648

    Article  CAS  PubMed  Google Scholar 

  4. Malik M (1996) Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381

    Article  Google Scholar 

  5. Chang Y-M, Shiao C-C, Huang Y-T et al (2016) Impact of metabolic syndrome and its components on heart rate variability during hemodialysis: a cross-sectional study. Cardiovasc Diabetol 15:16. doi:10.1186/s12933-016-0328-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Karason K, Mølgaard H, Wikstrand J, Sjöström L (1999) Heart rate variability in obesity and the effect of weight loss. Am J Cardiol 83:1242–1247

    Article  CAS  PubMed  Google Scholar 

  7. Lee JY, Joo K-J, Kim JT et al (2011) Heart rate variability in men with Erectile dysfunction. Int Neurourol J 15:87–91. doi:10.5213/inj.2011.15.2.87

    Article  PubMed  PubMed Central  Google Scholar 

  8. Neves VR, Kiviniemi AM, Hautala AJ et al (2011) Heart rate dynamics after exercise in cardiac patients with and without type 2 diabetes. Front Physiol 2:57. doi:10.3389/fphys.2011.00057

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pomeranz B, Macaulay RJ, Caudill MA et al (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 248:H151–H153

    Google Scholar 

  10. Kamath MV, Morillo CA, Upton ARM (2012) Heart rate variability (hrv) signal analysis: clinical applications. CRC Press, Boca Raton

    Book  Google Scholar 

  11. Plews DJ, Laursen PB, Stanley J et al (2013) Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med Auckl NZ 43:773–781. doi:10.1007/s40279-013-0071-8

    Article  Google Scholar 

  12. Kiviniemi AM, Hautala AJ, Kinnunen H et al (2009) Daily exercise prescription based on heart rate variability among men and women. Med Sci Sports Exerc. doi:10.1249/MSS.0b013e3181cd5f39

    Google Scholar 

  13. Saboul D, Pialoux V, Hautier C (2013) The impact of breathing on HRV measurements: implications for the longitudinal follow-up of athletes. Eur J Sport Sci 13:534–542. doi:10.1080/17461391.2013.767947

    Article  PubMed  Google Scholar 

  14. Berntson GG, Stowell JR (1998) ECG artifacts and heart period variability: don’t miss a beat! Psychophysiology 35:127–132. doi:10.1111/1469-8986.3510127

    Article  CAS  PubMed  Google Scholar 

  15. Lombardi F, Malliani A, Pagani M, Cerutti S (1996) Heart rate variability and its sympatho-vagal modulation. Cardiovasc Res 32:208–216

    Article  CAS  PubMed  Google Scholar 

  16. Gamelin F-X, Baquet G, Berthoin S, Bosquet L (2008) Validity of the polar S810 to measure R-R intervals in children. Int J Sports Med 29:134–138. doi:10.1055/s-2007-964995

    Article  PubMed  Google Scholar 

  17. Gamelin FX, Berthoin S, Bosquet L (2006) Validity of the polar S810 heart rate monitor to measure R-R intervals at rest. Med Sci Sports Exerc 38:887–893. doi:10.1249/01.mss.0000218135.79476.9c

    Article  PubMed  Google Scholar 

  18. Kingsley M, Lewis MJ, Marson RE (2005) Comparison of Polar 810 s and an ambulatory ECG system for RR interval measurement during progressive exercise. Int J Sports Med 26:39–44. doi:10.1055/s-2004-817878

    Article  CAS  PubMed  Google Scholar 

  19. Nunan D, Donovan G, Jakovljevic DG et al (2009) Validity and reliability of short-term heart-rate variability from the Polar S810. Med Sci Sports Exerc 41:243–250. doi:10.1249/MSS.0b013e318184a4b1

    Article  PubMed  Google Scholar 

  20. Vanderlei LCM, Silva RA, Pastre CM et al (2008) Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz J Med Biol Res Rev Bras Pesqui Médicas E Biológicas Soc Bras Biofísica Al 41:854–859

    CAS  Google Scholar 

  21. Barbosa MP da C, Silva NTD, Azevedo FM et al (2016) Comparison of Polar® RS800G3™ heart rate monitor with Polar® S810i™ and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clin Physiol Funct Imaging 36:112–117. doi:10.1111/cpf.12203

    Article  PubMed  Google Scholar 

  22. Cassirame J, Tordi N, Mourot L et al (2007) L’utilisation d’un nouveau système d’enregistrement de fréquence cardiaque battement à battement pour l’analyse traditionnelle de variabilité de fréquence cardiaque. Sci Sports 22:238–242. doi:10.1016/j.scispo.2007.07.006

    Article  Google Scholar 

  23. Quintana DS, Heathers JAJ, Kemp AH (2012) On the validity of using the Polar RS800 heart rate monitor for heart rate variability research. Eur J Appl Physiol 112:4179–4180. doi:10.1007/s00421-012-2453-2

    Article  PubMed  Google Scholar 

  24. Wallén MB, Hasson D, Theorell T et al (2012) Possibilities and limitations of the Polar RS800 in measuring heart rate variability at rest. Eur J Appl Physiol 112:1153–1165. doi:10.1007/s00421-011-2079-9

    Article  PubMed  Google Scholar 

  25. Weippert M, Kumar M, Kreuzfeld S et al (2010) Comparison of three mobile devices for measuring R-R intervals and heart rate variability: Polar S810i, Suunto t6 and an ambulatory ECG system. Eur J Appl Physiol 109:779–786. doi:10.1007/s00421-010-1415-9

    Article  PubMed  Google Scholar 

  26. Bouillod A, Cassirame J, Bousson JM et al (2015) Acurácia do sistema Suunto para a análise da variabilidade da frequência cardíaca durante um teste de inclinação. Rev Bras Cineantropometria E Desempenho Hum 17:409. doi:10.5007/1980-0037.2015v17n4p409

    Article  Google Scholar 

  27. Cassirame J, Stuckey MI, Sheppard F, Tordi N (2013) Accuracy of the Minicardio system for heart rate variability analysis compared to ECG. J Sports Med Phys Fit 53:248–254

    CAS  Google Scholar 

  28. Buchheit M (2014) Monitoring training status with HR measures: do all roads lead to Rome? Front Physiol. doi:10.3389/fphys.2014.00073

    Google Scholar 

  29. Le Meur Y, Pichon A, Schaal K et al (2013) Evidence of parasympathetic hyperactivity in functionally overreached athletes. Med Sci Sports Exerc 45:2061–2071. doi:10.1249/MSS.0b013e3182980125

    Article  PubMed  Google Scholar 

  30. Mourot L, Bouhaddi M, Perrey S et al (2004) Decrease in heart rate variability with overtraining: assessment by the Poincaré plot analysis. Clin Physiol Funct Imaging 24:10–18

    Article  PubMed  Google Scholar 

  31. Schmitt L, Regnard J, Desmarets M et al (2013) Fatigue shifts and scatters heart rate variability in elite endurance athletes. PLoS ONE 8:e71588. doi:10.1371/journal.pone.0071588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cassirame J, Tordi N, Fabre N et al (2014) Heart rate variability to assess ventilatory threshold in ski-mountaineering. Eur J Sport Sci 1–8. doi:10.1080/17461391.2014.957729

  33. Cottin F, Leprêtre P-M, Lopes P et al (2006) Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. Int J Sports Med 27:959–967

    Article  CAS  PubMed  Google Scholar 

  34. Mourot L, Fabre N, Savoldelli A, Schena F (2013) Second ventilatory threshold from heart rate variability: valid when the upper body is involved? Int J Sports Physiol Perform 9(4):695–701

    Google Scholar 

  35. Abboud S, Barnea O (1995) Errors due to sampling frequency of the electrocardiogram in spectral analysis of heart rate signals with low variability. Comput Cardiol 1995:461–463

    Google Scholar 

  36. Cassirame J, Chevrolat S, Tordi N, Mourot L (2015) Précision du périodogramme, quelles conséquences pour l’analyse de la Variabilité de la Fréquence Cardiaque? 16e Congrès ACAPS

  37. Vale-Cardoso AS, Guimarães HN (2010) The effect of 50/60 Hz notch filter application on human and rat ECG recordings. Physiol Meas 31:45–58. doi:10.1088/0967-3334/31/1/004

    Article  CAS  PubMed  Google Scholar 

  38. Tarvainen MP, Niskanen J-P, Lipponen JA et al (2014) Kubios HRV-heart rate variability analysis software. Comput Methods Programs Biomed 113:210–220. doi:10.1016/j.cmpb.2013.07.024

    Article  PubMed  Google Scholar 

  39. Bland JM, Altman DG (1995) Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 346:1085–1087

    Article  CAS  PubMed  Google Scholar 

  40. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–13. doi:10.1249/MSS.0b013e31818cb278

    Article  PubMed  Google Scholar 

  41. Barbieri R, Brown EN (2006) Correction of erroneous and ectopic beats using a point process adaptive algorithm. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf 1:3373–3376. doi:10.1109/IEMBS.2006.260325

    Article  Google Scholar 

  42. Citi L, Brown EN, Barbieri R (2012) A real-time automated point-process method for the detection and correction of erroneous and ectopic heartbeats. IEEE Trans Biomed Eng 59:2828–2837. doi:10.1109/TBME.2012.2211356

    Article  PubMed  PubMed Central  Google Scholar 

  43. Clifford GD (2002) Signal processing methods for heart rate variability. Dissertation, University of Oxford

  44. Clifford GD, Tarassenko L (2005) Quantifying errors in spectral estimates of HRV due to beat replacement and resampling. IEEE Trans Biomed Eng 52:630–638. doi:10.1109/TBME.2005.844028

    Article  PubMed  Google Scholar 

  45. Grant CC, Mongwe L, Janse van Rensburg DC et al (2013) The difference between exercise induced autonomic and fitness changes measured after 12 weeks and 20 weeks of medium to high intensity military training. J Strength Cond Res Natl Strength Cond Assoc. doi:10.1519/JSC.0b013e3182a1fe46

    Google Scholar 

  46. Hedelin R, Wiklund U, Bjerle P, Henriksson-Larsén K (2000) Cardiac autonomic imbalance in an overtrained athlete. Med Sci Sports Exerc 32:1531–1533

    Article  CAS  PubMed  Google Scholar 

  47. Mourot L, Bouhaddi M, Perrey S et al (2004) Quantitative Poincaré plot analysis of heart rate variability: effect of endurance training. Eur J Appl Physiol 91:79–87. doi:10.1007/s00421-003-0917-0

    Article  PubMed  Google Scholar 

  48. Buchheit M, Richard R, Doutreleau S et al (2004) Effect of acute hypoxia on heart rate variability at rest and during exercise. Int J Sports Med 25:264–269. doi:10.1055/s-2004-819938

    Article  CAS  PubMed  Google Scholar 

  49. Cottin F, Médigue C, Leprêtre P-M et al (2004) Heart rate variability during exercise performed below and above ventilatory threshold. Med Sci Sports Exerc 36:594–600

    Article  PubMed  Google Scholar 

  50. Kaikkonen P, Hynynen E, Mann T et al (2010) Can HRV be used to evaluate training load in constant load exercises? Eur J Appl Physiol 108:435–442. doi:10.1007/s00421-009-1240-1

    Article  PubMed  Google Scholar 

  51. Pichon AP, de Bisschop C, Roulaud M et al (2004) Spectral analysis of heart rate variability during exercise in trained subjects. Med Sci Sports Exerc 36:1702–1708

    Article  PubMed  Google Scholar 

  52. Yamamoto Y, Hughson RL, Peterson JC (1991) Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol Bethesda Md 71:1136–1142

    CAS  Google Scholar 

  53. Bailon R, Garatachea N, de la Iglesia I et al (2013) Influence of running stride frequency in heart rate variability analysis during treadmill exercise testing. IEEE Trans Biomed Eng. doi:10.1109/TBME.2013.2242328

    PubMed  Google Scholar 

  54. Lunt HC, Corbett J, Barwood MJ, Tipton MJ (2011) Cycling cadence affects heart rate variability. Physiol Meas 32:1133–1145. doi:10.1088/0967-3334/32/8/009

    Article  PubMed  Google Scholar 

  55. Meste O, Blain G, Bermon S (2007) Influence of the pedalling frequency on the Heart Rate Variability. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf 2007:279–282. doi:10.1109/IEMBS.2007.4352278

    Google Scholar 

  56. Blain G, Meste O, Bermon S (2005) Influences of breathing patterns on respiratory sinus arrhythmia in humans during exercise. Am J Physiol Heart Circ Physiol 288:H887-895. doi:10.1152/ajpheart.00767.2004

    Google Scholar 

  57. Buchner T (2011) HRV strongly depends on breathing. Are we questioning the right suspect? Engineering in Medicine Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pp 7739–7742

  58. Karavirta L, Tulppo MP, Nyman K et al (2008) Estimation of maximal heart rate using the relationship between heart rate variability and exercise intensity in 40–67 years old men. Eur J Appl Physiol 103:25–32. doi:10.1007/s00421-007-0667-5

    Article  PubMed  Google Scholar 

  59. Smolander J, Ajoviita M, Juuti T et al (2011) Estimating oxygen consumption from heart rate and heart rate variability without individual calibration. Clin Physiol Funct Imaging 31:266–271. doi:10.1111/j.1475-097X.2011.01011.x

    Article  PubMed  Google Scholar 

  60. Smolander J, Juuti T, Kinnunen M-L et al (2008) A new heart rate variability-based method for the estimation of oxygen consumption without individual laboratory calibration: application example on postal workers. Appl Ergon 39:325–331. doi:10.1016/j.apergo.2007.09.001

    Article  PubMed  Google Scholar 

  61. Cooke WH (1998) Respiratory sinus arrhythmia and cardiovascular neural regulation in athletes. Med Sci Sports Exerc 30:1179–1180

    Article  CAS  PubMed  Google Scholar 

  62. Sin PYW, Webber MR, Galletly DC et al (2010) Interactions between heart rate variability and pulmonary gas exchange efficiency in humans. Exp Physiol 95:788–797. doi:10.1113/expphysiol.2010.052910

    Article  PubMed  Google Scholar 

  63. Tsuji H, Venditti FJ, Manders ES et al (1996) Determinants of heart rate variability. J Am Coll Cardiol 28:1539–1546

    Article  CAS  PubMed  Google Scholar 

  64. Anosov O, Patzak A, Kononovich Y, Persson PB (2000) High-frequency oscillations of the heart rate during ramp load reflect the human anaerobic threshold. Eur J Appl Physiol 83:388–394

    Article  CAS  PubMed  Google Scholar 

  65. Blain G, Meste O, Bouchard T, Bermon S (2005) Assessment of ventilatory thresholds during graded and maximal exercise test using time varying analysis of respiratory sinus arrhythmia. Br J Sports Med 39:448-452-452. doi:10.1136/bjsm.2004.014134

    Article  Google Scholar 

  66. Cottin F, Médigue C, Lopes P et al (2007) Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test. Int J Sports Med 28:287–294. doi:10.1055/s-2006-924355

    Article  CAS  PubMed  Google Scholar 

  67. Karapetian GK, Engels HJ, Gretebeck RJ (2008) Use of heart rate variability to estimate LT and VT. Int J Sports Med 29:652–657. doi:10.1055/s-2007-989423

    Article  CAS  PubMed  Google Scholar 

  68. Sales MM, Campbell CSG, Morais PK et al (2011) Noninvasive method to estimate anaerobic threshold in individuals with type 2 diabetes. Diabetol Metab Syndr 3:1. doi:10.1186/1758-5996-3-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the patients, for their collaboration in the study. We also thank Fiona Ecarnot (EA3920, University Hospital Besancon, France) for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Cassirame.

Ethics declarations

Conflict of interest

The authors have no conflict of interest regarding this study.

Ethical approval

All subjects provided written informed consent to participate in this study, which was approved by the Regional Ethical Review Board and performed in accordance with the Declaration of Helsinki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassirame, J., Vanhaesebrouck, R., Chevrolat, S. et al. Accuracy of the Garmin 920 XT HRM to perform HRV analysis. Australas Phys Eng Sci Med 40, 831–839 (2017). https://doi.org/10.1007/s13246-017-0593-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-017-0593-8

Keywords

Navigation