Skip to main content
Log in

Intracoronary Optical Coherence Tomography: Insights from Clinical Research—What Do We Need to Learn?

  • Intravascular Imaging (E Regar and U Landmesser, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) is a high-resolution technology for imaging of biological tissues that has shown tremendous potential for intracoronary use. Based on near-infrared light rather than ultrasound, catheter-based OCT provides cross-sectional images of the vessel wall and related devices in a histology-like manner. At present, OCT is primarily being used in research to better characterize and understand the pathophysiology of vulnerable plaques and to study the acute and long-term effects of coronary stent implantation. The present review provides the interventional cardiologist with a summary of the clinical research involving OCT, with an emphasis on specific challenges and how these may be overcome to promote a shift from the mainly research application of this technology, to a wider adoption in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Muller JE, Abela GS, Nesto RW, et al. Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. J Am Coll Cardiol. 1994;23:809–13.

    CAS  PubMed  Google Scholar 

  2. Schwartz RS, Huber KC, Murphy JG, et al. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol. 1992;19:267–74.

    CAS  PubMed  Google Scholar 

  3. Mintz GS, Painter JA, Pichard AD, et al. Atherosclerosis in angiographically "normal" coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol. 1995;25:1479–85.

    CAS  PubMed  Google Scholar 

  4. Jensen LO, Thayssen P, Pedersen KE, et al. Regression of coronary atherosclerosis by simvastatin: a serial intravascular ultrasound study. Circulation. 2004;110:265–70.

    CAS  PubMed  Google Scholar 

  5. Nakamura S, Colombo A, Gaglione A, et al. Intracoronary ultrasound observations during stent implantation. Circulation. 1994;89:2026–34.

    CAS  PubMed  Google Scholar 

  6. Colombo A, Hall P, Nakamura S, et al. Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation. 1995;91:1676–88.

    CAS  PubMed  Google Scholar 

  7. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.

    PubMed  Google Scholar 

  8. Bouma BE, Tearney GJ, Yabushita H, et al. Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart. 2003;89:317–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Alwan A, Maclean DR, Riley LM, et al. Monitoring and surveillance of chronic non-communicable diseases: progress and capacity in high-burden countries. Lancet. 2010;376:1861–8.

    PubMed  Google Scholar 

  10. Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

    CAS  PubMed  Google Scholar 

  11. Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.

    CAS  PubMed  Google Scholar 

  12. Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107:113–9.

    PubMed  Google Scholar 

  13. Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50:933–9.

    PubMed  Google Scholar 

  14. Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:1551–5.

    PubMed Central  PubMed  Google Scholar 

  15. Fujii K, Masutani M, Okumura T, et al. Frequency and predictor of coronary thin-cap fibroatheroma in patients with acute myocardial infarction and stable angina pectoris a 3-vessel optical coherence tomography study. J Am Coll Cardiol. 2008;52:787–8.

    PubMed  Google Scholar 

  16. Sawada T, Shite J, Garcia-Garcia HM, et al. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J. 2008;29:1136–46.

    PubMed  Google Scholar 

  17. Tanaka A, Imanishi T, Kitabata H, et al. Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. Eur Heart J. 2009;30:1348–55.

    PubMed  Google Scholar 

  18. Kubo T, Imanishi T, Kashiwagi M, et al. Multiple coronary lesion instability in patients with acute myocardial infarction as determined by optical coherence tomography. Am J Cardiol. 2010;105:318–22.

    PubMed  Google Scholar 

  19. Toutouzas K, Tsiamis E, Karanasos A, et al. Morphological characteristics of culprit atheromatic plaque are associated with coronary flow after thrombolytic therapy: new implications of optical coherence tomography from a multicenter study. JACC Cardiovasc Interv. 2010;3:507–14.

    PubMed  Google Scholar 

  20. Ino Y, Kubo T, Tanaka A, et al. Difference of culprit lesion morphologies between ST-segment elevation myocardial infarction and non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. JACC Cardiovasc Interv. 2011;4:76–82.

    PubMed  Google Scholar 

  21. Nasu K, Terashima M, Habara M, et al. Impact of cholesterol metabolism on coronary plaque vulnerability of target vessels: a combined analysis of virtual histology intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Interv. 2013;6:746–55.

  22. Niccoli G, Giubilato S, Di Vito L, et al. Severity of coronary atherosclerosis in patients with a first acute coronary event: a diabetes paradox. Eur Heart J. 2013;34:729–41.

    PubMed  Google Scholar 

  23. Fukunaga M, Fujii K, Nakata T, et al. Multiple complex coronary atherosclerosis in diabetic patients with acute myocardial infarction: a three-vessel optical coherence tomography study. EuroIntervention. 2012;8:955–61.

    PubMed  Google Scholar 

  24. Toutouzas K, Karanasos A, Riga M, et al. Optical coherence tomography assessment of the spatial distribution of culprit ruptured plaques and thin-cap fibroatheromas in acute coronary syndrome. EuroIntervention. 2012;8:477–85.

    PubMed  Google Scholar 

  25. Davies MJ, Thomas A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med. 1984;310:1137–40.

    CAS  PubMed  Google Scholar 

  26. Farb A, Tang AL, Burke AP, et al. Sudden coronary death. Frequency of active coronary lesions, inactive coronary lesions, and myocardial infarction. Circulation. 1995;92:1701–9.

    CAS  PubMed  Google Scholar 

  27. Tanaka A, Imanishi T, Kitabata H, et al. Distribution and frequency of thin-capped fibroatheromas and ruptured plaques in the entire culprit coronary artery in patients with acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol. 2008;102:975–9.

    PubMed  Google Scholar 

  28. Cheruvu PK, Finn AV, Gardner C, et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol. 2007;50:940–9.

    PubMed  Google Scholar 

  29. Li QX, Fu QQ, Shi SW, et al. Relationship between plasma inflammatory markers and plaque fibrous cap thickness determined by intravascular optical coherence tomography. Heart. 2010;96:196–201.

    CAS  PubMed  Google Scholar 

  30. Chia S, Raffel OC, Takano M, et al. Comparison of coronary plaque characteristics between diabetic and non-diabetic subjects: an in vivo optical coherence tomography study. Diabetes Res Clin Pract. 2008;81:155–60.

    PubMed Central  PubMed  Google Scholar 

  31. Feng T, Yundai C, Lian C, et al. Assessment of coronary plaque characteristics by optical coherence tomography in patients with diabetes mellitus complicated with unstable angina pectoris. Atherosclerosis. 2010;213:482–5.

    PubMed  Google Scholar 

  32. Burke AP, Weber DK, Kolodgie FD, et al. Pathophysiology of calcium deposition in coronary arteries. Herz. 2001;26:239–44.

    CAS  PubMed  Google Scholar 

  33. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664–72.

    PubMed  Google Scholar 

  34. Raffel OC, Tearney GJ, Gauthier DD, et al. Relationship between a systemic inflammatory marker, plaque inflammation, and plaque characteristics determined by intravascular optical coherence tomography. Arterioscler Thromb Vasc Biol. 2007;27:1820–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Raffel OC, Merchant FM, Tearney GJ, et al. In vivo association between positive coronary artery remodeling and coronary plaque characteristics assessed by intravascular optical coherence tomography. Eur Heart J. 2008;29:1721–8.

    PubMed Central  PubMed  Google Scholar 

  36. Rathore S, Terashima M, Matsuo H, et al. Association of coronary plaque composition and arterial remodeling: an optical coherence tomography study. Atherosclerosis. 2012;221:405–15.

    CAS  PubMed  Google Scholar 

  37. Porto I, Di Vito L, Burzotta F, et al. Predictors of periprocedural (type IVa) myocardial infarction, as assessed by frequency-domain optical coherence tomography. Circ Cardiovasc Interv. 2012;5(89–96):S81–6.

    Google Scholar 

  38. Ozaki Y, Tanaka A, Tanimoto T, et al. Thin-cap fibroatheroma as high-risk plaque for microvascular obstruction in patients with acute coronary syndrome. Circ Cardiovasc Imaging. 2011;4:620–7.

    PubMed  Google Scholar 

  39. Lee SY, Mintz GS, Kim SY, et al. Attenuated plaque detected by intravascular ultrasound: clinical, angiographic, and morphologic features and post-percutaneous coronary intervention complications in patients with acute coronary syndromes. JACC Cardiovasc Interv. 2009;2:65–72.

    PubMed  Google Scholar 

  40. Goldstein JA, Maini B, Dixon SR, et al. Detection of lipid-core plaques by intracoronary near-infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circ Cardiovasc Interv. 2011;4:429–37.

    PubMed  Google Scholar 

  41. Schwartz GG, Olsson AG, Ezekowitz MD, et al. Atorvastatin for acute coronary syndromes. JAMA. 2001;286:533–5.

    CAS  PubMed  Google Scholar 

  42. Garcia-Garcia HM, Costa MA, et al. Imaging of coronary atherosclerosis: intravascular ultrasound. Eur Heart J. 2010;31:2456–69.

    PubMed  Google Scholar 

  43. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    CAS  PubMed  Google Scholar 

  44. Garcia-Garcia HM, Mintz GS, Lerman A, et al. Tissue characterisation using intravascular radiofrequency data analysis: recommendations for acquisition, analysis, interpretation and reporting. EuroIntervention. 2009;5:177–89.

    PubMed  Google Scholar 

  45. Takarada S, Imanishi T, Kubo T, et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis. 2009;202:491–7.

    CAS  PubMed  Google Scholar 

  46. Takarada S, Imanishi T, Ishibashi K, et al. The effect of lipid and inflammatory profiles on the morphological changes of lipid-rich plaques in patients with non-ST-segment elevated acute coronary syndrome: follow-up study by optical coherence tomography and intravascular ultrasound. JACC Cardiovasc Interv. 2010;3:766–72.

    PubMed  Google Scholar 

  47. Uemura S, Ishigami K, Soeda T, et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary athermanous plaques. Eur Heart J. 2012;33:78–85.

    PubMed  Google Scholar 

  48. Wykrzykowska JJ, Diletti R, Gutierrez-Chico JL, et al. Plaque sealing and passivation with a mechanical self-expanding low outward force nitinol vShield device for the treatment of IVUS and OCT-derived thin cap fibroatheromas (TCFAs) in native coronary arteries: report of the pilot study vShield Evaluated at Cardiac hospital in Rotterdam for Investigation and Treatment of TCFA (SECRITT). EuroIntervention. 2012;8:945–54.

    PubMed  Google Scholar 

  49. Brugaletta S, Radu MD, Garcia-Garcia HM, et al. Circumferential evaluation of the neointima by optical coherence tomography after ABSORB bioresorbable vascular scaffold implantation: can the scaffold cap the plaque? Atherosclerosis. 2012;221:106–12. Interesting original paper exploring the possibility of using neointimal growth to modify plaque stability.

    CAS  PubMed  Google Scholar 

  50. Brezinski ME. Current capabilities and challenges for optical coherence tomography as a high-impact cardiovascular imaging modality. Circulation. 2011;123:2913–5.

    PubMed Central  PubMed  Google Scholar 

  51. Radu MD, Falk E. In search of vulnerable features of coronary plaques with optical coherence tomography: is it time to rethink the current methodological concepts? Eur Heart J. 2012;33:9–12.

  52. Kawasaki M, Bouma BE, Bressner J, et al. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J Am Coll Cardiol. 2006;48:81–8.

    PubMed  Google Scholar 

  53. Manfrini O, Mont E, Leone O, et al. Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol. 2006;98:156–9.

    PubMed  Google Scholar 

  54. Goderie TP, van Soest G, Garcia-Garcia HM, et al. Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro. Int J Cardiovasc Imaging. 2010;26:843–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Xu C, Schmitt JM, Carlier SG, Virmani R. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. J Biomed Opt. 2008;13:034003.

    PubMed  Google Scholar 

  56. van Soest G, Regar E, Goderie TP, et al. Pitfalls in plaque characterization by OCT: image artifacts in native coronary arteries. JACC Cardiovasc Imaging. 2011;4:810–3. This paper highlights the importance of understanding how various artefacts may affect plaque characterization.

    PubMed  Google Scholar 

  57. Radu MD, Räber L, Serruys PW. Artefacts with Intracoronary Optical Coherence Tomography. In: Radu MD, Räber L, Garcia-Garcia HM, et al, editors. The Clinical Atlas of Intravascular Optical Coherence Tomography. Toulouse: Europa Edition; 2012. This document contains a wide source of OCT images with focus on image interpretation.

  58. Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol. 2012;59:1058–72. This consensus document can be used as standard reference regarding the current state of OCT.

    PubMed  Google Scholar 

  59. Räber L, Heo JH, Radu MD, et al. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques. EuroIntervention. 2012;8:98–108.

    PubMed  Google Scholar 

  60. van Soest G, Goderie T, Regar E, et al. Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J Biomed Opt. 2010;15:011105.

    PubMed  Google Scholar 

  61. Wang Z, Chamie D, Bezerra HG, et al. Volumetric quantification of fibrous caps using intravascular optical coherence tomography. Biomed Opt Express. 2012;3:1413–26.

    PubMed Central  PubMed  Google Scholar 

  62. Stone GW, Moses JW, Ellis SG, et al. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N Engl J Med. 2007;356:998–1008.

    CAS  PubMed  Google Scholar 

  63. Virmani R, Kolodgie FD, Farb A, et al. Drug eluting stents: are human and animal studies comparable? Heart. 2003;89:133–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. van Werkum JW, Heestermans AA, de Korte FI, et al. Long-term clinical outcome after a first angiographically confirmed coronary stent thrombosis: an analysis of 431 cases. Circulation. 2009;119:828–34.

    PubMed  Google Scholar 

  65. Räber L, Magro M, Stefanini GG, et al. Very late coronary stent thrombosis of a newer-generation everolimus-eluting stent compared with early-generation drug-eluting stents: a prospective cohort study. Circulation. 2012;125:1110–21.

    PubMed  Google Scholar 

  66. Cutlip DE, Windecker S, Mehran R, et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation. 2007;115:2344–51.

    PubMed  Google Scholar 

  67. Alfonso F, Suarez A, Angiolillo DJ, et al. Findings of intravascular ultrasound during acute stent thrombosis. Heart. 2004;90:1455–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation. 2007;115:2435–41.

    PubMed  Google Scholar 

  69. Cook S, Wenaweser P, Togni M, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation. 2007;115:2426–34.

    CAS  PubMed  Google Scholar 

  70. Kang SJ, Lee CW, Song H, et al. OCT analysis in patients with very late stent thrombosis. JACC Cardiovasc Imaging. 2013;6:695–703.

    PubMed  Google Scholar 

  71. Amabile N, Souteyrand G, Ghostine S, et al. Very late stent thrombosis related to incomplete neointimal coverage or neoatherosclerotic plaque rupture identified by optical coherence tomography imaging. Eur Heart J Cardiovasc Imaging. 2014;15:24–31.

  72. Park SJ, Kim YH, Park DW, et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Interv. 2009;2:167–77.

    PubMed  Google Scholar 

  73. Räber L, Windecker S. IVUS-guided percutaneous coronary interventions: an ongoing odyssey? Circulation. 2014;129:417–9.

  74. Guagliumi G, Sirbu V, Musumeci G, et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc Interv. 2012;5:12–20. This study is the first systematic evaluation of late stent thrombosis using OCT.

    PubMed  Google Scholar 

  75. Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011;57:1314–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Imola F, Mallus MT, Ramazzotti V, et al. Safety and feasibility of frequency domain optical coherence tomography to guide decision making in percutaneous coronary intervention. EuroIntervention. 2010;6:575–81.

    PubMed  Google Scholar 

  77. Viceconte N, Chan PH, Barrero EA, et al. Frequency domain optical coherence tomography for guidance of coronary stenting. Int J Cardiol. 2013;166:722–8.

    PubMed  Google Scholar 

  78. Prati F, Di Vito L, Biondi-Zoccai G, et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l'Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention. 2012;8:823–9.

    PubMed  Google Scholar 

  79. Di Giorgio A, Capodanno D, Ramazzotti V, et al. Optical coherence tomography guided in-stent thrombus removal in patients with acute coronary syndromes. Int J Cardiovasc Imaging. 2013;29:989–96.

    PubMed  Google Scholar 

  80. Cutlip DE, Baim DS, Ho KK, et al. Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials. Circulation. 2001;103:1967–71.

    CAS  PubMed  Google Scholar 

  81. Biondi-Zoccai GG, Agostoni P, Sangiorgi GM, et al. Incidence, predictors, and outcomes of coronary dissections left untreated after drug-eluting stent implantation. Eur Heart J. 2006;27:540–6.

    PubMed  Google Scholar 

  82. Cheneau E, Leborgne L, Mintz GS, et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108:43–7.

    PubMed  Google Scholar 

  83. Gonzalo N, Serruys PW, Okamura T, et al. Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach. Heart. 2009;95:1913–9.

    CAS  PubMed  Google Scholar 

  84. Gonzalo N, Serruys PW, Okamura T, et al. Relation between plaque type and dissections at the edges after stent implantation: an optical coherence tomography study. Int J Cardiol. 2011;150:151–5.

  85. Kume T, Okura H, Miyamoto Y, et al. Natural history of stent edge dissection, tissue protrusion and incomplete stent apposition detectable only on optical coherence tomography after stent implantation. Circ J. 2012;76:698–703.

  86. Radu MD, Raber L, Heo J, et al. Natural history of optical coherence tomography-detected non-flow-limiting edge dissections following drug-eluting stent implantation. EuroIntervention. 2014;9:1085–9.

  87. Reith S, Battermann S, Jaskolka A, et al. Predictors and incidence of stent edge dissections in patients with type 2 diabetes as determined by optical coherence tomography. Int J Cardiovasc Imaging. 2013;29:1237–47.

    PubMed  Google Scholar 

  88. Kawamori H, Shite J, Shinke T, et al. Natural consequence of post-intervention stent malapposition, thrombus, tissue prolapse, and dissection assessed by optical coherence tomography at mid-term follow-up. Eur Heart J Cardiovasc Imaging. 2013;14:865–75.

    PubMed Central  PubMed  Google Scholar 

  89. Chamie D, Bezerra HG, Attizzani GF, et al. Incidence, predictors, morphological characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography. JACC Cardiovasc Interv. 2013;6:800–13.

    PubMed  Google Scholar 

  90. Christensen R, Holm NR, Orhoj T, et al. TCT-297 Stent edge dissections detected by optical coherence tomography: incidence, predictors and 12-month outcome. J Am Coll Cardiol. 2012;60:17S.

    Google Scholar 

  91. Sheris SJ, Canos MR, Weissman NJ. Natural history of intravascular ultrasound-detected edge dissections from coronary stent deployment. Am Heart J. 2000;139(1 Pt 1):59–63.

    CAS  PubMed  Google Scholar 

  92. Liu X, Tsujita K, Maehara A, et al. Intravascular ultrasound assessment of the incidence and predictors of edge dissections after drug-eluting stent implantation. JACC Cardiovasc Interv. 2009;2:997–1004.

    PubMed  Google Scholar 

  93. De Cock D, Bennet J, Ughi GJ, et al. EuroPCR-357 Healing course of tissue prolapse and intra-stent dissection after PCI: a sequential OCT study. EuroIntervention. 2013;EuroPCR 2013 [Abstracts].

  94. Hassan AK, Bergheanu SC, Stijnen T, et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J. 2009;31:1172–80.

    PubMed  Google Scholar 

  95. Gonzalo N, Barlis P, Serruys PW, et al. Incomplete stent apposition and delayed tissue coverage are more frequent in drug-eluting stents implanted during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction than in drug-eluting stents implanted for stable/unstable angina: insights from optical coherence tomography. JACC Cardiovasc Interv. 2009;2:445–52.

    PubMed  Google Scholar 

  96. Ozaki Y, Okumura M, Ismail TF, et al. The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study. Eur Heart J. 2010;31:1470–6. This study provides important information about the healing of malapposed struts.

    PubMed  Google Scholar 

  97. Kubo T, Imanishi T, Kitabata H, et al. Comparison of vascular response after sirolimus-eluting stent implantation between patients with unstable and stable angina pectoris: a serial optical coherence tomography study. JACC Cardiovasc Imaging. 2008;1:475–84.

    PubMed  Google Scholar 

  98. Tanigawa J, Barlis P, Dimopoulos K, et al. The influence of strut thickness and cell design on immediate apposition of drug-eluting stents assessed by optical coherence tomography. Int J Cardiol. 2009;134:180–8.

    PubMed  Google Scholar 

  99. Tanigawa J, Barlis P, Dimopoulos K, et al. Optical coherence tomography to assess malapposition in overlapping drug-eluting stents. EuroIntervention. 2008;3:580–3.

    PubMed  Google Scholar 

  100. Lindsay AC, Paulo M, Kadriye K, et al. Predictors of stent strut malapposition in calcified vessels using frequency-domain optical coherence tomography. J Invasive Cardiol. 2013;25:429–34.

    PubMed  Google Scholar 

  101. Gomez-Lara J, Radu M, Brugaletta S, et al. Serial analysis of the malapposed and uncovered struts of the new generation of everolimus-eluting bioresorbable scaffold with optical coherence tomography. JACC Cardiovasc Interv. 2011;4:992–1001.

    PubMed  Google Scholar 

  102. Gutierrez-Chico JL, Regar E, Nuesch E, et al. Delayed coverage in malapposed and side-branch struts with respect to well-apposed struts in drug-eluting stents: in vivo assessment with optical coherence tomography. Circulation. 2011;124:612–23. This study provides important information on the impact of apposition on healing.

    CAS  PubMed  Google Scholar 

  103. Gutierrez-Chico JL, Wykrzykowska J, Nuesch E, et al. Vascular tissue reaction to acute malapposition in human coronary arteries: sequential assessment with optical coherence tomography. Circ Cardiovasc Interv. 2012;5(20–9):S21–8.

    Google Scholar 

  104. Mintz GS. What to do about late incomplete stent apposition? Circulation. 2007;115:2379–81.

    PubMed  Google Scholar 

  105. Guagliumi G, Sirbu V, Musumeci G, et al. Strut coverage and vessel wall response to a new-generation paclitaxel-eluting stent with an ultrathin biodegradable abluminal polymer: Optical Coherence Tomography Drug-Eluting Stent Investigation (OCTDESI). Circ Cardiovasc Interv. 2010;3:367–75.

    CAS  PubMed  Google Scholar 

  106. Barlis P, Regar E, Serruys PW, et al. An optical coherence tomography study of a biodegradable vs durable polymer-coated limus-eluting stent: a LEADERS trial sub-study. Eur Heart J. 2010;31:165–76.

    CAS  PubMed  Google Scholar 

  107. Guagliumi G, Costa MA, Sirbu V, et al. Strut coverage and late malapposition with paclitaxel-eluting stents compared with bare metal stents in acute myocardial infarction: optical coherence tomography substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) Trial. Circulation. 2011;123:274–81.

    CAS  PubMed  Google Scholar 

  108. Gutierrez-Chico JL, van Geuns RJ, Regar E, et al. Tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent vs a fluoropolymer-coated everolimus-eluting stent at 13-month follow-up: an optical coherence tomography substudy from the RESOLUTE All Comers trial. Eur Heart J. 2011;32:2454–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Räber L, Baumgartner S, Garcia HM, et al. Long-term vascular healing in response to sirolimus- and paclitaxel-eluting stents: an optical coherence tomography study. JACC Cardiovasc Interv. 2012;5:946–57.

    PubMed  Google Scholar 

  110. Prati F, Zimarino M, Stabile E, et al. Does optical coherence tomography identify arterial healing after stenting? An in vivo comparison with histology, in a rabbit carotid model. Heart. 2008;94:217–21.

    CAS  PubMed  Google Scholar 

  111. Finn AV, Nakazawa G, Joner M, et al. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler Thromb Vasc Biol. 2007;27:1500–10.

    CAS  PubMed  Google Scholar 

  112. Murata A, Wallace-Bradley D, Tellez A, et al. Accuracy of optical coherence tomography in the evaluation of neointimal coverage after stent implantation. JACC Cardiovasc Imaging. 2010;3:76–84.

    PubMed  Google Scholar 

  113. Templin C, Meyer M, Muller MF, et al. Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy. Eur Heart J. 2010;31:1792–801. This study provides insights into the importance of using the OCT signal for correct tissue characterization, and may be used for future automatic segmentation algorithms.

    PubMed Central  PubMed  Google Scholar 

  114. Gutierrez-Chico JL, Alegria-Barrero E, Teijeiro-Mestre R, et al. Optical coherence tomography: from research to practice. Eur Heart J Cardiovasc Imaging. 2012;13:370–84.

    PubMed Central  PubMed  Google Scholar 

  115. Otsuka F, Nakano M, Vorpahl M, et al. Pathology of second- versus first-generation drug-eluting stents in humans: does safety issue still exist? Eur Heart J. 2011;32(Abstract Suppl):82.

  116. Nakano M, Vorpahl M, Otsuka F, et al. Ex vivo assessment of vascular response to coronary stents by optical frequency domain imaging. JACC Cardiovasc Imaging. 2012;5:71–82.

    PubMed  Google Scholar 

  117. Radu M, Jorgensen E, Kelbaek H, et al. Optical coherence tomography at follow-up after percutaneous coronary intervention: relationship between procedural dissections, stent strut malapposition and stent healing. EuroIntervention. 2011;7:353–61.

    PubMed  Google Scholar 

  118. Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48:193–202.

    PubMed  Google Scholar 

  119. Radu MD, Raber L, Kalesan B, et al. Coronary evaginations are associated with positive vessel remodeling and are nearly absent following implantation of newer-generation drug-eluting stents: an optical coherence tomography and intravascular ultrasound study. Eur Heart J. 2014;35:795–807.

  120. Radu MD, Pfenniger A, Raber L, et al. Flow disturbances in stent-related coronary evaginations: a computational fluid-dynamic simulation study. EuroIntervention. 2014;10:113–23.

  121. Imai M, Kadota K, Goto T, et al. Incidence, risk factors, and clinical sequelae of angiographic peri-stent contrast staining after sirolimus-eluting stent implantation. Circulation. 2011;123:2382–91.

    CAS  PubMed  Google Scholar 

  122. Ughi GJ, Adriaenssens T, Onsea K, et al. Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage. Int J Cardiovasc Imaging. 2012;28:229–41.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Maria D. Radu, Henning Kelbæk, Erik Jørgensen, Steffen Helqvist, Bettina Løjmand, Thomas Engstrøm, and Kari I. Saunamäki declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. Radu.

Additional information

This article is part of the Topical Collection on Intravascular Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radu, M.D., Kelbæk, H., Jørgensen, E. et al. Intracoronary Optical Coherence Tomography: Insights from Clinical Research—What Do We Need to Learn?. Curr Cardiovasc Imaging Rep 7, 9286 (2014). https://doi.org/10.1007/s12410-014-9286-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-014-9286-9

Keywords

Navigation