Skip to main content
Log in

Myocardial Oxygenation Imaging: New Methods for Ischemia Detection

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Myocardial ischemia is associated with many cardiovascular diseases, including coronary artery disease, congestive heart failure, hypertensive left ventricular hypertrophy, and diabetic cardiomyopathy, etc. The ischemia is caused by the imbalance of myocardial oxygen supply and demand. Positron emission tomography (PET) is the only noninvasive imaging technique to directly measure myocardial oxygenation. However, its low spatial resolution, limited availability, and ionizing radiation discourage the widespread use of PET to detect myocardial ischemia in clinical practice. The cardiac BOLD (blood-oxygen-level dependence) effect allows the measurement of myocardial oxygenation through T2 or T2* change using cardiac magnetic resonance (CMR) imaging techniques. Many efforts were made to improve the sensitivity of detecting this change and image quality for clinical evaluations. With relatively high spatial resolution, oxygenation in the subendocardium, a common location for myocardial ischemia, for the first time could be directly assessed by CMR oxygenation imaging. This method, combined with other CMR functional and anatomic imaging, will offer a one-stop shop for the detection of myocardial ischemia, even in the absence of angiographically significant coronary artery stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. AHA Statistical Update-Heart Disease and Stroke Statistics—2009 Update. Circulation. 2009;119:480-486.

    Google Scholar 

  2. Braunwald E. Heart Disease. 6th Edition, Philadelphia, W.B. Saunders Company, 2001.

  3. Segall G. Assessment of myocardial viability by positron emission tomography. Nucl Med Commun 2002;23:323-330.

    Article  PubMed  Google Scholar 

  4. Bergmann SR, Herrero P, Markham J, et al.: Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J. Am. Coll. Cardiol. 1989; 14: 639-652.

    Article  PubMed  CAS  Google Scholar 

  5. Sun KT, Yeatman LA, Buxton DB, et al.: Simultaneous measurement of myocardial oxygen consumption and blood flow using [1-carbon-11]acetate. J Nucl Med 1998;39:272-80.

    PubMed  CAS  Google Scholar 

  6. Buxton DB, Nienaber CA, Luxen A, et al.: Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1-11C] acetate in dynamic positron emission tomography, Circulation 1989;79: 134-142.

    PubMed  CAS  Google Scholar 

  7. Iida H, Rhodes CG, Araujo LI, et al.: Noninvasive quantification of regional myocardial metabolic rate for oxygen by use of 15O2 inhalation and positron emission tomography. Theory, error analysis, and application in humans. Circulation 1996;94:792-780.

    PubMed  CAS  Google Scholar 

  8. • Friedrich MG. Testing for myocardial ischemia: the end of surrogates? JACC Cardiovasc Imaging. 2010;3:385-387. This short review highlights the importance of detecting myocardial oxygenation in ischemic hearts.

    Article  PubMed  Google Scholar 

  9. •• Karamitsos TD, Leccisotti L, Arnold JR, et al.: Relationship between regional myocardial oxygenation and perfusion in patients with coronary artery disease: insights from cardiovascular magnetic resonance and positron emission tomography. Circ Cardiovasc Imaging. 2010; 3:32-40. This article describes the mismatching of abnormalities between myocardial perfusion and oxygenation in patients with CAD, demonstrating the importance for direct measurement of myocardial oxygenation.

    Article  PubMed  Google Scholar 

  10. Edelman RR, Manning WJ, Gervino E, Li W: Flow velocity quantification in human coronary arteries with fast, breath-hold MR angiography, J. Magn. Reson. Imag. 1993; 3: 699-703.

    Article  CAS  Google Scholar 

  11. Keegan J, Firmin D, Gatehouse P, Longmore D: The application of breath hold phase velocity mapping techniques to the measurement of coronary artery blood flow velocity: phantom data and initial in vivo results, Magn. Reson. Med. 1994; 31: 526-536.

    Article  PubMed  CAS  Google Scholar 

  12. Zerhouni EA, Parish DM, Rogers WJ, et al.: Tagging of the human heart by magnetic resonance imaging: a noninvasive method of assessment of myocardial motion, Radiology 1988; 169: 59-63.

    PubMed  CAS  Google Scholar 

  13. Manning WJ, Atkinson DJ, Grossman W, et al.: First pass nuclear magnetic resonance imaging studies using gadolinium DTPA in patients with coronary artery disease, Am. Coll. Cardiol. 1991; 18: 9590-965.

    Article  Google Scholar 

  14. Wilke N, Simm C, Zhang J, et al.: Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn. Reson. Med. 1993; 29: 485-497.

    Article  PubMed  CAS  Google Scholar 

  15. Saeed M, Wendland MF, Sakuma H, et al.: Coronary artery stenosis: detection with contrast enhanced MR imaging in dogs, Radiology 1995; 196: 79-84.

    PubMed  CAS  Google Scholar 

  16. Wilke N, Jerosch-Herold M, Wang Y, et al.: Myocardial perfusion reserve: assessment with multisection quantitative, first-pass MR imaging. Radiology 1997; 204: 373-384.

    PubMed  CAS  Google Scholar 

  17. Schwitter J, DeMarco T, Kneifel S, et al.: Magnetic resonance-based assessment of global coronary flow and flow reserve and its relation to left ventricular functional parameters: a comparison with positron emission tomography. Circulation 2000; 101:2696-2702.

    PubMed  CAS  Google Scholar 

  18. Wagner A, Mahrholdt H, Sechtem U, et al.: MR imaging of myocardial perfusion and viability. Magn Reson Imaging Clin N Am. 2003;11:49-66.

    Article  PubMed  Google Scholar 

  19. Thulborn KR, Waterton JC, Matthews PM, Radda GK: Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim. Biophys. Acta 1982; 714: 265-270.

    PubMed  CAS  Google Scholar 

  20. Wright GA, Hu BS, Macovski A: Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J. Magn. Reson. Imaing 1991; 1: 275-283.

    Google Scholar 

  21. Hoppel BE, Weisskoff RM, Thulborn KR, et al.: Measuement of regional blood oxygenation and cerebral hemodynamics. Magn. Reson. Med. 1993; 30: 715-723.

    Article  PubMed  CAS  Google Scholar 

  22. Ogawa S, Lee TM, Nayak AS, Glynn P: Oxygenation-sensitive contrast in magnetic resonance imaging of the rodent brain at high magnetic fields. Magn. Reson. Med 1990; 14: 68-78.

    Article  PubMed  CAS  Google Scholar 

  23. Balaban RS, Taylor JF,Turner R: Effect of cardiac flow on gradient recalled echo images of the canine heart, NMR in Biomed. 1994; 7: 89-95.

    Article  CAS  Google Scholar 

  24. Niemi P, Poncelet BP, Kwong KK, et al.: Myocardial intensity changes associated with flow stimulation in blood oxygenation sensitive magnetic resonance imaging. Magn Reson Med 1996;36:78-82.

    Article  PubMed  CAS  Google Scholar 

  25. Reeder SB, Holmes AA, McVeigh ER, Forder JR: Simultaneous noninvasive determination of regional myocardial perfusion and oxygen content in rabbits: toward direct measurement of myocardial oxygen consumption at MR imaging. Radiology 1999; 212:739-747.

    PubMed  CAS  Google Scholar 

  26. • Li D, Dhawale P, Rubin PJ, et al.: Myocardial signal response to dipyridamole and dobutamine: demonstration of the BOLD using a double-echo gradient-echo sequence. Magn Reson Med 1996;36:16-20. This article describes the first clinical application of myocardial oxygenation imaging using CMR method, which lay the foundation in this field.

    Article  PubMed  CAS  Google Scholar 

  27. Wacker CM, Hartlep AW, Pfleger S, et al.: Susceptibility-sensitive magnetic resonance imaging detects human myocardium supplied by a stenotic coronary artery without a contrast agent. J Am Coll Cardiol. 2003;41:834-840.

    Article  PubMed  Google Scholar 

  28. • Beache GM, Herzka DA, Boxerman JL, et al.: Attenuated myocardial vasodilator response in patients with hypertensive hypertrophy revealed by oxygenation-dependent magnetic resonance imaging. Circulation 2001;104:1214-1217. This article describes the importance of the detection of altered myocardial oxygenation in non-CAD patients.

    Article  PubMed  CAS  Google Scholar 

  29. Friedrich MG, Niendorf T, Schulz-Menger J, et al.: Blood oxygen level-dependent magnetic resonance imaging in patients with stress-induced angina. Circulation. 2003;108:2219-223.

    Article  PubMed  CAS  Google Scholar 

  30. Egred M, Waiter GD, Semple SIK, et al.: Blood oxygen level-dependent (BOLD) magnetic resonance imaging in patients with dypiridamole induced ischemia; a PET comparative study. Int J Cardiol 2007;115:36–41.

    Article  PubMed  CAS  Google Scholar 

  31. Manka R, Paetsch I, Schnackenburg B, et al.: BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia. J Cardiovasc Magn Reson. 2010;12:54.

    Article  PubMed  Google Scholar 

  32. Oja JM, Gillen JS, Kauppinen RA, et al.: Determination of oxygen extraction ratios by magnetic resonance imaging. J Cereb Blood Flow Metab 1999; 19:1289-1295.

    Article  PubMed  CAS  Google Scholar 

  33. Atalay MK, Reeder SB, Zerhouni EA, Forder JR: Blood Oxygenation Dependence of T1 and T2 in the Isolated, Perfused Rabbit Heart at 4.7T, Magn. Reson. Med. 1995; 34: 623-627.

    Article  PubMed  CAS  Google Scholar 

  34. Foltz WD, Huang H, Fort S, Wright GA: Vasodilator response assessment in porcine myocardium with magnetic resonance relaxometry. Circulation 2002; 106: 2714-2719.

    Article  PubMed  Google Scholar 

  35. Wright KB, Klocke FJ, Deshpande VS, et al.: Assessment of regional differences in myocardial blood flow using T2-weighted 3D BOLD imaging. Magn Reson Med. 2001;46:573-578.

    Article  PubMed  CAS  Google Scholar 

  36. •• Fieno DS, Shea SM, Li Y, et al.: Myocardial perfusion imaging based on the blood oxygen level-dependent effect using T2- prepared steady-state free-precession magnetic resonance imaging. Circulation 2004;110:1284 –1290. This article establishes the T 2 -SSFP method for reliable myocardial oxygenation imaging.

    Article  PubMed  Google Scholar 

  37. Arumana JM, Li D, Dharmakumar R: Deriving blood-oxygen-level-dependent contrast in MRI with T2*-weighted, T2-prepared and phase-cycled SSFP methods: theory and experiment. Magn Reson Med. 2008 Mar;59(3):561-70.

    Article  PubMed  Google Scholar 

  38. Dharmakumar R, Arumana JM, Tang R, et al.: Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0 T: theory and experimental evaluation in canines. J Magn Reson Imaging. 2008;27:1037-1045.

    Article  PubMed  Google Scholar 

  39. Bernhardt P, Manzke R, Bornstedt A, et al.: Blood oxygen level-dependent magnetic resonance imaging using T2-prepared steady-state free-precession imaging in comparison to contrast-enhanced myocardial perfusion imaging. Int J Cardiol. 2009 Oct 30.

  40. Jahnke C, Gebker R, Manka R, et al.: Navigator-gated 3D blood oxygen level– dependent CMR at 3.0-T for detection of stress-induced myocardial ischemic reactions. J Am Coll Cardiol Img 2010;3:375– 84.

    Google Scholar 

  41. Foltz WD, Merchant N, Downar E, et al.: Coronary venous oximetry using MRI. Magn Reson Med 1999;42:837-848.

    Article  PubMed  CAS  Google Scholar 

  42. Yang Y, Foltz WD, Merchant N, et al.: Noninvasive quantitative measurement of myocardial and whole-body oxygen consumption using MRI: initial results. Magn Reson Imaging. 2009;27:147-154.

    Article  PubMed  Google Scholar 

  43. •• Zheng J, Wang JH, Nolte M, et al.: Dynamic estimation of myocardial oxygen extraction ratio during dipyridamole stress by MRI: A preliminary study in canines. Magn Reson Med 2004; 51:718-726. This article describes a quantitative model to assess myocardial OEF, which is used for the calculation of myocardial oxygen consumption.

    Article  PubMed  Google Scholar 

  44. McCommis KS, Goldstein TA, Abendschein DR, et al.: Quantification of Regional Myocardial Oxygenation by Magnetic Resonance Imaging: Validation with Positron Emission Tomography. Circ Cardiovasc Imaging, 2009; 3: 41-46.

    Article  PubMed  Google Scholar 

  45. McCommis KS, O’Connor R, Donna L, et al.: Quantification of Global and Regional Myocardial Oxygenation in Humans: Initial Experiences. J Cardiovasc Magn Reson, 2010; 12:34.

    Article  PubMed  Google Scholar 

  46. McCommis KS, Zhang HS, Goldstein TA, et al.: Myocardial Blood Volume Is Associated with Myocardial Oxygen Consumption: An Experimental Study with CMR in a Canine Model, JACC Cardiovasc Imaging. 2009;2:1313-1320.

    Article  PubMed  Google Scholar 

  47. Zheng J, Lesniak D, O’Connor R, et al.: Assessment and validation of cardiac MR oximetry in obesity. Proc. Intl. Soc. Mag. Reson. Med, p484, May, Stockholm, Sweden, 2010.

  48. Laine H, Katoh C, Luotolahti M, et al.: Myocardial oxygen consumption is unchanged but efficiency is reduced in patients with essential hypertension and left ventricular hypertrophy. Circulation. 1999;100:2425–2430.

    PubMed  CAS  Google Scholar 

  49. de las Fuentes L, Soto PF, Cupps BP, et al.: Hypertensive left ventricular hypertrophy is associated with abnormal myocardial fatty acid metabolism and myocardial efficiency. J Nucl Cardiol. 2006;13:369-377.

    Google Scholar 

  50. How OJ, Aasum E, Severson DL, et al.: Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes. 2006 Feb;55(2):466-73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by National Institute of Health grant 1R01 HL74019. The author thanks the valuable input from Dr. Linda Peterson and consultation from Dr. Robert J. Gropler. The author also appreciates the careful editing of the manuscript by David Muccigrosso.

Disclosure

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J. Myocardial Oxygenation Imaging: New Methods for Ischemia Detection. Curr Cardiovasc Imaging Rep 4, 159–164 (2011). https://doi.org/10.1007/s12410-010-9063-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-010-9063-3

Keywords

Navigation