Skip to main content
Log in

Added value of CT in adult congenital heart disease

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Congenital heart diseases (CHDs) are the most common birth defects, occurring in about 1% of live births. Today, most infants born with CHD live into adulthood. The number of adults with CHD now exceeds the number of children with CHD. As a result, patients with CHD represent a large and steadily growing subpopulation of patients who require specialized diagnostic and therapeutic management. CT is capable of contributing valuable information about congenital abnormalities. We examine the added utility of CT in identifying and assessing CHD in referred patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hoffman JI, Kaplan S: The incidence of congenital heart disease. J Am Coll Cardiol 2002, 39:1890–1900.

    Article  PubMed  Google Scholar 

  2. Ferencz C, Rubin JD, McCarter RJ, et al.: Congenital heart disease: prevalence at livebirth. The Baltimore-Washington infant study. Am J Epidemiol 1985, 121:31–36.

    CAS  PubMed  Google Scholar 

  3. Moller JH, Taubert KA, Allen HD, et al.: Cardiovascular health and disease in children: current status. A special writing group from the task force on children and youth, American Heart Association. Circulation 1994, 89:923–930.

    CAS  PubMed  Google Scholar 

  4. Opotowsky AR, Siddiqi OK, Webb GD: Web trends in hospitalizations for adults with congenital heart disease in the U.S. J Am Coll Cardiol 2009, 54:460–467.

    Article  PubMed  Google Scholar 

  5. Haramati LB, Glickstein JS, Issenberg HJ, et al.: MR imaging and CT of vascular anomalies and connections in patients with congenital heart disease: significance in surgical planning. Radiographics 2002, 22:337–347.

    PubMed  Google Scholar 

  6. Ho VB: ACR appropriateness criteria on suspected congenital heart disease in adults. J Am Coll Radiol 2008, 5:97–104.

    Article  PubMed  Google Scholar 

  7. Bhalla S, Javidan-Nejad C, Bierhals AJ, et al.: CT in the evaluation of congenital heart disease in children, adolescents, and young adults. Curr Treat Options Cardiovasc Med 2008, 10:425–432.

    Article  PubMed  Google Scholar 

  8. 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP 1991, 21:1–201.

  9. Fujioka C, Horiguchi J, Kiguchi M, et al.: Survey of aorta and coronary arteries with prospective ECG-triggered 100-kV 64-MDCT angiography. AJR Am J Roentgenol 2009, 193:227–233.

    Article  PubMed  Google Scholar 

  10. Raff GL, Chinnaiyan KM, Share DA, et al.: Radiation dose from cardiac computed tomography before and after implementation of radiation dose-reduction techniques. Advanced Cardiovascular Imaging Consortium Co-Investigators. JAMA 2009, 301:2340–2348.

    Article  CAS  PubMed  Google Scholar 

  11. English RF, Ettedgui JA: The distance from the Amplatzer septal occluder to the mitral valve in patients undergoing interventional closure of defects in the oval fossa increases with growth of the patient. Cardiol Young 2004, 14:494–497.

    Article  PubMed  Google Scholar 

  12. Lee T, Tsai IC, Fu YC, et al.: MDCT evaluation after closure of atrial septal defect with an Amplatzer septal occluder. AJR Am J Roentgenol 2007, 188:W431–W439.

    Article  PubMed  Google Scholar 

  13. Hagen PT, Scholz DG, Edwards WD: Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc 1984, 59:17–20.

    CAS  PubMed  Google Scholar 

  14. Wood TD, Patel A: A critical review of patent foramen ovale detection using saline contrast echocardiography: when bubbles lie. J Am Soc Echocardiogr 2006, 19:215–222.

    Article  Google Scholar 

  15. Pinto FJ: When and how to diagnose patent foramen ovale. Heart 2005, 91:438–440.

    Article  CAS  PubMed  Google Scholar 

  16. Williamson EE, Kirsch J, Araoz PA, et al.: ECG-gated cardiac CT angiography using 64-MDCT for detection of patent foramen ovale. AJR Am J Roentgenol 2008, 190:929–933.

    Article  PubMed  Google Scholar 

  17. Kim YJ, Hur J, Shim CY, et al.: Patent foramen ovale: diagnosis with multidetector CT—comparison with transesophageal echocardiography. Radiology 2009, 250:61–67.

    Article  PubMed  Google Scholar 

  18. Hayabuchi Y, Mori K, Kitagawa T, et al.: Polytetrafluoroethylene graft calcification in patients with surgically repaired congenital heart disease: evaluation using multidetector-row computed tomography. Am Heart J 2007, 153:806.e1–806.e8.

    Article  Google Scholar 

  19. Westra SJ, Hill JA, Alejos JC, et al.: Three-dimensional helical CT of pulmonary arteries in infants and children with congenital heart disease. AJR Am J Roentgenol 1999, 173:109–115.

    CAS  PubMed  Google Scholar 

  20. Hayabuchi Y, Mori K, Kagami S: Virtual endoscopy using multidetector-row CT for coil occlusion of patent ductus arteriosus. Catheter Cardiovasc Interv 2007, 70:434–439.

    Article  PubMed  Google Scholar 

  21. LaBounty TM, Sundaram B, Agarwal P, et al.: Aortic valve area on 64-MDCT correlates with transesophageal echocardiography in aortic stenosis. AJR Am J Roentgenol 2008, 191:1652–1658.

    Article  PubMed  Google Scholar 

  22. Runza G, Fattouch K, Cademartiri F, et al.: ECG-gated multidetector computed tomography for the assessment of the postoperative ascending aorta. Radiol Med 2009, 114:705–717.

    Article  CAS  PubMed  Google Scholar 

  23. Konen E, Goitein O, Feinberg MS, et al.: The role of ECG-gated MDCT in the evaluation of aortic and mitral mechanical valves: initial experience. AJR Am J Roentgenol 2008, 191:26–31.

    Article  PubMed  Google Scholar 

  24. Ryan R, Abbara S, Colen RR, et al.: Cardiac valve disease: spectrum of findings on cardiac 64-MDCT. AJR Am J Roentgenol 2008, 190:W294–W303.

    Article  PubMed  Google Scholar 

  25. Spevak PJ, Johnson PT, Fishman EK: Surgically corrected congenital heart disease: utility of 64-MDCT. AJR Am J Roentgenol 2008, 191:854–861.

    Article  PubMed  Google Scholar 

  26. Raman SV, Shah M, McCarthy B, et al.: Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J 2006, 151:736–744.

    Article  PubMed  Google Scholar 

  27. Cheung MM, Konstantinov IE, Redington AN: Late complications of repair of tetralogy of Fallot and indications for pulmonary valve replacement. Semin Thorac Cardiovasc Surg 2005, 17:155–159.

    Article  PubMed  Google Scholar 

  28. Dabizzi RP, Teofori G, Barletta GA, et al.: Associated coronary and cardiac anomalies in tetralogy of Fallot. Eur Heart J 1990, 11:692–704.

    CAS  PubMed  Google Scholar 

  29. Schoenhagen P, Halliburton SS, Stillman AE, et al.: Noninvasive imaging of coronary arteries: current and future role of multi-detector row CT. Radiology 2004, 232:7–17.

    Article  PubMed  Google Scholar 

  30. Achenbach S, Giesler T, Ropers D, et al.: Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation 2001, 103:2535–2538.

    CAS  PubMed  Google Scholar 

  31. Oh KH, Choo KS, Lim SJ, et al.: Multidetector CT evaluation of total anomalous pulmonary venous connections: comparison with echocardiography. Pediatr Radiol 2009, 39:950–954.

    Article  PubMed  Google Scholar 

  32. Kinsara A, Chan KL: Noninvasive imaging modalities in coarctation of the aorta. Chest 2004, 126:1016–1018.

    Article  PubMed  Google Scholar 

  33. Di Sessa TG, Di Sessa P, Gregory B, Vranicar M: The use of 3D contrast-enhanced CT reconstructions to project images of vascular rings and coarctation of the aorta. Echocardiography 2009, 26:76–81.

    Article  PubMed  Google Scholar 

  34. Das KM, El-Menyar AA, Arafa SE, Suwaidi JA: Intracardiac shunting of ruptured sinus of Valsalva aneurysm in a patient presented with acute myocardial infarction: role of 64-slice MDCT. Int J Cardiovasc Imaging 2006, 22:797–802.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amgad N. Makaryus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Makaryus, A.N. Added value of CT in adult congenital heart disease. curr cardiovasc imaging rep 2, 455–461 (2009). https://doi.org/10.1007/s12410-009-0057-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-009-0057-y

Keywords

Navigation