Skip to main content

Advertisement

Log in

Stiffened Extracellular Matrix and Signaling from Stromal Fibroblasts via Osteoprotegerin Regulate Tumor Cell Invasion in a 3-D Tumor in Situ Model

  • Original Article
  • Published:
Cancer Microenvironment

Abstract

Several changes have been described in the stroma surrounding a tumor, including changes in cellular composition, altered extracellular matrix composition and organization, and increases in stiffness. Tumor cells are influenced by the composition, organization, and mechanical properties of the microenvironment, and by signals from stromal cells. Here we sought to test whether signaling from stromal fibroblasts and/or the small change in stiffness observed in vivo surrounding epithelial tumors regulates tumor cell invasion from a model of a tumor in situ. We generated a novel tumor in situ model system in which a tumor spheroid is encased within a collagen-IV containing membrane and further encased within a collagen-I matrix of in vivo stiffness with or without fibroblasts. Effects of the matrix, fibroblasts or fibroblast signals were determined by observing the invasion of tumor cells into the matrix. Effects of reciprocal tumor cell signaling upon fibroblasts were determined by observing markers of fibroblast activation. We found that a stiffened matrix led to increased dissemination of MDA-MB-231 cells from tumor spheroids when no fibroblasts were present and that MCF10A cells maintained a more normal organization with a stiffened matrix. The presence of fibroblasts, or fibroblast conditioned media, attenuated the effect upon MDA-MB-231 cells. We also observed an attenuation of fibroblast activation associated gene expression in the presence of MDA-MB-231 cells, with a paradoxical increase in activation associated contractile activity. Furthermore, we identified osteoprotegerin as a soluble factor released by fibroblasts in the stiffened environment that is key to the inhibition of cell invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, SS M, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  CAS  PubMed  Google Scholar 

  2. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar S, Weaver VM (2009) Mechanics, Malignancy, and Metastasis: the Force Journey of a Tumor Cell. Cancer Metastasis Rev 28:113–127

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gjorevski N, Boghaert E, Nelson CM (2011) Regulation of epithelial-mesenchymal transition by transmission of mechanical stress through epithelial tissues. Cancer Microenviron 5:29–38

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dhimolea E, Maffini MV, Soto AM, Sonnenschein C (2010) The role of collagen reorganization on mammary epithelial morphogenesis in a 3d culture model. Biomaterials 31:3622–3630

    Article  CAS  PubMed  Google Scholar 

  6. Carey SP, Kraning-Rush CM, Williams RM, Reinhart-King CA (2012) Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33:4157–4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wozniak MA Keely, PJ: Use of three-dimensional collagen gels to study mechanotransduction in t47d breast epithelial cells. Biol Proced Online 2005, 7:144–161.

  8. Krause S, Maffini MV, Soto AM, Sonnenschein C (2008) A novel 3d in vitro culture model to study stromal-epithelial interactions in the mammary gland. Tissue Eng Part C Methods 14:261–271

    Article  CAS  PubMed  Google Scholar 

  9. Chaudhuri O, Koshy ST, DA B, Cunha C, J-W S, CS V, KH A, DJ M (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13(June):970–978

    Article  CAS  PubMed  Google Scholar 

  10. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119(Pt 19):3901–3903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harburger DS, Calderwood D a (2009) Integrin signalling at a glance. J Cell Sci 122:159–163

    Article  CAS  PubMed  Google Scholar 

  13. Wallace D (2003) Collagen gel systems for sustained delivery and tissue engineering. Adv Drug Deliv Rev 55:1631–1649

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Asadi A, Monroe MR, Douglas EP (2009) pH effects on collagen fibrillogenesis in vitro: electrostatic interactions and phosphate binding. Mater Sci Eng C 29:1643–1649

    Article  CAS  Google Scholar 

  15. Yang Y-L, Leone LM, Kaufman LJ (2009) Elastic moduli of collagen gels can be predicted from two-dimensional confocal microscopy. Biophys J 97:2051–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Plant AL, Bhadriraju K, Spurlin T, JT E (2009) Cell response to matrix mechanics: focus on collagen. Biochim Biophys Acta, Mol Cell Res 1793:893–902

    Article  CAS  PubMed  Google Scholar 

  17. McLane JS, Ligon LA (2015) Palladin mediates stiffness-induced fibroblast activation in the tumor microenvironment. Biophys J 109:249–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  19. Marsh T, Pietras K, McAllister SS (1832) Fibroblasts as architects of cancer pathogenesis. Biochim Biophys Acta 2012:1070–1078

    Google Scholar 

  20. Apostolopoulou M, Ligon L (2012) Cadherin-23 mediates heterotypic cell-cell adhesion between breast cancer epithelial cells and fibroblasts. PLoS One 7:e33289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1:482–497

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ta B, Lai L a, Coleman J, MP B, Pan S, Chen R (2012) Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion. PLoS One 7:e30219

    Article  Google Scholar 

  23. Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (cafs) in tumor microenvironment. Front Biosci 15:166–179

    Article  CAS  Google Scholar 

  24. Ohuchida K, Mizumoto K, Murakami M, Qian L, Sato N, Nagai E, Matsumoto K, Nakamura T, Tanaka M (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal. Interactions 1:3215–3222

    Google Scholar 

  25. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg R a (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  CAS  PubMed  Google Scholar 

  26. Goicoechea SM, García-Mata R, Staub J, Valdivia a, Sharek L, CG MC, RF H, Urrutia R, JJ Y, HJ K, Otey C a (2014) Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts. Oncogene 33:1265–1273

    Article  CAS  PubMed  Google Scholar 

  27. Rhim ADD, Oberstein PEE, Thomas DHH, Mirek ETT, Palermo CFF, SA S, ENN D, Saunders T, CPP B, IWW T, CBB W, Kitajewski J, MGG F-B, MEE F-Z, Iacobuzio-Donahue C, KPP O, BZZ S (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:735–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, Higashio K (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234:137–142

    Article  CAS  PubMed  Google Scholar 

  29. Lyden D, Welch DR, Psaila B (2011) Cancer metastasis: biologic basis and therapeutics. Cambridge University Press, New York

    Book  Google Scholar 

  30. Tang Z-N, Zhang F, Tang P, Qi X-W, Jiang J (2011) RANKL-induced migration of mda-mb-231 human breast cancer cells via src and mapk activation. Oncol Rep 26:1243–1250

    CAS  PubMed  Google Scholar 

  31. Zhang L, Teng Y, Zhang Y, Liu J, Xu L, Qu J, Hou K, Yang X, Liu Y, Qu X (2012) C-Src-mediated RANKL-induced breast cancer cell migration by activation of the erk and akt pathway. Oncol Lett 3:395–400

    CAS  PubMed  Google Scholar 

  32. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664

    Article  CAS  PubMed  Google Scholar 

  33. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  34. Hughes CS, Postovit LM, Lajoie G a (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890

    Article  CAS  PubMed  Google Scholar 

  35. Erez N, Truitt M, Olson P, Hanahan D (2010) Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-κB-Dependent Manner. Cancer Cell 17:135–147

    Article  CAS  PubMed  Google Scholar 

  36. Lv M, Xu Y, Tang R, Ren J, Shen S, Chen Y, Liu B, Hou Y, Wang T (2014) miR141-CXCL1-CXCR2 signaling-induced treg recruitment regulates metastases and survival of non-small cell lung cancer. Mol Cancer Ther 13:3152–3162

    Article  CAS  PubMed  Google Scholar 

  37. Cunha GR, Reese BA, Sekkingstad M (1980) Induction of nuclear androgen-binding sites in epithelium of the embryonic urinary bladder by mesenchyme of the urogenital sinus of embryonic mice. Endocrinology 107:1767–1770

    Article  CAS  PubMed  Google Scholar 

  38. Bhowmick N, Neilson E, Moses H (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(November):332–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Orimo A, Weinberg R (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle (August):1597–1601

  40. Król M, Pawłowski KM, Szyszko K, Maciejewski H, Dolka I, Manuali E, Jank M, Motyl T (2012) The gene expression profiles of canine mammary cancer cells grown with carcinoma-associated fibroblasts (cafs) as a co-culture in vitro. BMC Vet Res 8:35

    Article  PubMed  PubMed Central  Google Scholar 

  41. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011

    CAS  PubMed  Google Scholar 

  42. Mullen P, Ritchie A, Langdon SP, Miller WR (1996) Effect of matrigel on the tumorigenicity of human breast and ovarian carcinoma cell lines. Int J Cancer 67:816–820

    Article  CAS  PubMed  Google Scholar 

  43. Yoshida S, Shimizu E, Ogura T, Takada M, Sone S (1997) Stimulatory effect of reconstituted basement membrane components (matrigel) on the colony formation of a panel of human lung cancer cell lines in soft agar. J Cancer Res Clin Oncol 123:301–309

    Article  CAS  PubMed  Google Scholar 

  44. Tilghman RW, Cowan CR, Mih JD, Koryakina Y, Gioeli D, Slack-Davis JK, Blackman BR, Tschumperlin DJ, Parsons JT (2010) Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS One 5:1–13

    Article  Google Scholar 

  45. Gao M-Q, Kim BG, Kang S, Choi YP, Park H, Kang KS, Cho NH (2010) Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition-like state in breast cancer cells in vitro. J Cell Sci (September)):3507–3514

  46. Yu M, Qi X, Moreno JL, Farber DL, Keegan AD (2011) NF- B signaling participates in both RANKL- and IL-4-induced macrophage fusion: receptor cross-talk leads to alterations in NF- B pathways. J Immunol 187:1797–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shin Y, Kim H, Han S, Won J, Jeong HE, Lee E-S, Kamm RD, Kim J-H, Chung S (2013) Extracellular matrix heterogeneity regulates three-dimensional morphologies of breast adenocarcinoma cell invasion. Adv Healthc Mater 2:790–794

    Article  CAS  PubMed  Google Scholar 

  48. Killian PH, Kronski E, Michalik KM, Barbieri O, Astigiano S, Sommerhoff CP, Pfeffer U, Nerlich AG, Bachmeier BE (2012) Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and − 2. Carcinogenesis 33:2507–2519

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y-H, Dong Y-Y, Wang W-M, Xie X-Y, Wang Z-M, Chen R-X, Chen J, Gao D-M, Cui J-F, Ren Z-G (2013) Vascular endothelial cells facilitated HCC invasion and metastasis through the Akt and NF-κB pathways induced by paracrine cytokines. J Exp Clin Cancer Res 32:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C (2011) IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res 71:5296–5306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yadav A, Kumar B, Datta J, Teknos TN, Kumar P (2011) IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the jak-stat3-snail signaling pathway. Mol Cancer Res 9:1658–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Snyder M, Huang J, Huang X-Y, Zhang JJ (2014) A signal transducer and activator of transcription 3·nuclear factor κB (Stat3·NFκB) complex is necessary for the expression of fascin in metastatic breast cancer cells in response to interleukin (IL)-6 and tumor necrosis factor (TNF)-α. J Biol Chem 289:30082–30089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chiu H-Y, Sun K-H, Chen S-Y, Wang H-H, Lee M-Y, Tsou Y-C, Jwo S-C, Sun G-H, Tang S-J (2012) Autocrine CCL2 promotes cell migration and invasion via PKC activation and tyrosine phosphorylation of paxillin in bladder cancer cells. Cytokine 59:423–432

    Article  CAS  PubMed  Google Scholar 

  54. Lester RD, Jo M, Montel V, Takimoto S, Gonias SL (2007) uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. J Cell Biol 178:425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gorantla B, Asuthkar S, Rao JS, Patel J, Gondi CS (2011) Suppression of the uPAR-uPA system retards angiogenesis, invasion, and in vivo tumor development in pancreatic cancer cells. Mol Cancer Res 9:377–389

    Article  CAS  PubMed  Google Scholar 

  56. Lei X, Bandyopadhyay A, Le T, Sun L (2002) Autocrine TGFbeta supports growth and survival of human breast cancer MDA-MB-231 cells. Oncogene 21:7514–7523

    Article  CAS  PubMed  Google Scholar 

  57. Kondo S, Kubota S, Shimo T, Nishida T, Yosimichi G, Eguchi T, Sugahara T, Takigawa M (2002) Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis 23:769–776

    Article  CAS  PubMed  Google Scholar 

  58. Brünner N, Moser C, Clarke R, Cullen K (1992) IGF-I and IGF-II expression in human breast cancer xenografts: relationship to hormone independence. Breast Cancer Res Treat 22:39–45

    Article  PubMed  Google Scholar 

  59. Chauhan H, Abraham A, JRa P, JH P, Walker R a, JL J (2003) There is more than one kind of myofibroblast: analysis of CD34 expression in benign, in situ, and invasive breast lesions. J Clin Pathol 56:271–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Mariah Hahn and Ryan Gilbert as well as members of their labs, Dany Munoz, Jon Zuidema and Chris McKay, for their assistance with biomaterials. This work has been supported by the American Cancer Society Research Scholar Grant (RSG-10-245-01-CSM).

Authors’ Contributions

JSM acquired all of the data and completed the data analysis. JSM and LAL jointly conceived and directed the project, interpreted the data, and drafted and revised the manuscript. Both authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee A. Ligon.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Electronic supplementary material

ESM 1

(PDF 1733 kb)

ESM 2

(PDF 1171 kb)

ESM 3

(PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLane, J.S., Ligon, L.A. Stiffened Extracellular Matrix and Signaling from Stromal Fibroblasts via Osteoprotegerin Regulate Tumor Cell Invasion in a 3-D Tumor in Situ Model. Cancer Microenvironment 9, 127–139 (2016). https://doi.org/10.1007/s12307-016-0188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-016-0188-z

Keywords

Navigation