Skip to main content
Log in

Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Identification of the target proteins of bioactive small molecules isolated from phenotypic screens plays an important role in chemical biology and drug discovery. However, discovering the targets of small molecules is often the most challenging and time-consuming step for chemical biology researchers. To overcome the bottlenecks in target identification, many new approaches based on genomics, proteomics, and bioinformatics technologies have been developed. Here, we provide an overview of the current major methodologies for target deconvolution of bioactive small molecules. To obtain an integrated view of the mechanisms of action of small molecules, we propose a systematic approach that involves the combination of multi-omics-based target identification and validation and preclinical target validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aghajan, M., N. Jonai, K. Flick, F. Fu, M. Luo, X. Cai, I. Ouni, N. Pierce, X. Tang, B. Lomenick, R. Damoiseaux, R. Hao, P.M. Del Moral, R. Verma, Y. Li, C. Li, K.N. Houk, M.E. Jung, N. Zheng, L. Huang, R.J. Deshaies, P. Kaiser, and J. Huang. 2010. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nature Biotechnology 28: 738–742.

    Article  CAS  PubMed  Google Scholar 

  • Aoki, S., K. Morohashi, T. Sunoki, K. Kuramochi, S. Kobayashi, and F. Sugawara. 2007. Screening of paclitaxel-binding molecules from a library of random peptides displayed on T7 phage particles using paclitaxel-photoimmobilized resin. Bioconjugate Chemistry 18: 1981–1986.

    Article  CAS  PubMed  Google Scholar 

  • Apsel, B., J.A. Blair, B. Gonzalez, T.M. Nazif, M.E. Feldman, B. Aizenstein, R. Hoffman, R.L. Williams, K.M. Shokat, and Z.A. Knight. 2008. Targeted polypharmacology: Discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nature Chemical Biology 4: 691–699.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Armour, C.D., and P.Y. Lum. 2005. From drug to protein: Using yeast genetics for high-throughput target discovery. Current Opinion in Chemical Biology 9: 20–24.

    Article  CAS  PubMed  Google Scholar 

  • Bantscheff, M., D. Eberhard, Y. Abraham, S. Bastuck, M. Boesche, S. Hobson, T. Mathieson, J. Perrin, M. Raida, C. Rau, V. Reader, G. Sweetman, A. Bauer, T. Bouwmeester, C. Hopf, U. Kruse, G. Neubauer, N. Ramsden, J. Rick, B. Kuster, and G. Drewes. 2007. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nature Biotechnology 25: 1035–1044.

    Article  CAS  PubMed  Google Scholar 

  • Brehm, M.A., M.V. Wiles, D.L. Greiner, and L.D. Shultz. 2014. Generation of improved humanized mouse models for human infectious diseases. Journal of Immunological Methods 410: 3–17.

    Article  CAS  PubMed  Google Scholar 

  • Brissette, R., J.K. Prendergast, and N.I. Goldstein. 2006. Identification of cancer targets and therapeutics using phage display. Current Opinion in Drug Discovery & Development 9: 363–369.

    CAS  Google Scholar 

  • Brummelkamp, T.R., A.W. Fabius, J. Mullenders, M. Madiredjo, A. Velds, R.M. Kerkhoven, R. Bernards, and R.L. Beijersbergen. 2006. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nature Chemical Biology 2: 202–206.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, E.E. 2010. Natural products as chemical probes. ACS Chemical Biology 5: 639–653.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castoreno, A.B., Y. Smurnyy, A.D. Torres, M.S. Vokes, T.R. Jones, A.E. Carpenter, and U.S. Eggert. 2010. Small molecules discovered in a pathway screen target the Rho pathway in cytokinesis. Nature Chemical Biology 6: 457–463.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, X., M.X. Liu, and G.Y. Yan. 2012. Drug-target interaction prediction by random walk on the heterogeneous network. Molecular BioSystems 8: 1970–1978.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, A.C., R.G. Coleman, K.T. Smyth, Q. Cao, P. Soulard, D.R. Caffrey, A.C. Salzberg, and E.S. Huang. 2007. Structure-based maximal affinity model predicts small-molecule druggability. Nature Biotechnology 25: 71–75.

    Article  PubMed  Google Scholar 

  • Cheng, K.W., C.C. Wong, M. Wang, Q.Y. He, and F. Chen. 2010. Identification and characterization of molecular targets of natural products by mass spectrometry. Mass Spectrometry Reviews 29: 126–155.

    CAS  PubMed  Google Scholar 

  • Chin, R.M., X. Fu, M.Y. Pai, L. Vergnes, H. Hwang, G. Deng, S. Diep, B. Lomenick, V.S. Meli, G.C. Monsalve, E. Hu, S.A. Whelan, J.X. Wang, G. Jung, G.M. Solis, F. Fazlollahi, C. Kaweeteerawat, A. Quach, M. Nili, A.S. Krall, H.A. Godwin, H.R. Chang, K.F. Faull, F. Guo, M. Jiang, S.A. Trauger, A. Saghatelian, D. Braas, H.R. Christofk, C.F. Clarke, M.A. Teitell, M. Petrascheck, K. Reue, M.E. Jung, A.R. Frand, and J. Huang. 2014. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510: 397–401.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cho, Y.S., and H.J. Kwon. 2012. Identification and validation of bioactive small molecule target through phenotypic screening. Bioorganic and Medicinal Chemistry 20: 1922–1928.

    Article  CAS  PubMed  Google Scholar 

  • Deshpande, G.P., J. Hayles, K.L. Hoe, D.U. Kim, H.O. Park, and E. Hartsuiker. 2009. Screening a genome-wide S. pombe deletion library identifies novel genes and pathways involved in genome stability maintenance. DNA Repair 8: 672–679.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ericson, E., S. Hoon, R.P. St Onge, G. Giaever, and C. Nislow. 2010. Exploring gene function and drug action using chemogenomic dosage assays. Methods in Enzymology 470: 233–255.

    Article  CAS  PubMed  Google Scholar 

  • Ermakova, S., B.Y. Choi, H.S. Choi, B.S. Kang, A.M. Bode, and Z. Dong. 2005. The intermediate filament protein vimentin is a new target for epigallocatechin gallate. The Journal of biological chemistry 280: 16882–16890.

    Article  CAS  PubMed  Google Scholar 

  • Franceschini, A., D. Szklarczyk, S. Frankild, M. Kuhn, M. Simonovic, A. Roth, J. Lin, P. Minguez, P. Bork, C. von Mering, and L.J. Jensen. 2013. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research 41(Database issue): D808–D815.

  • Futamura, Y., M. Muroi, and H. Osada. 2013. Target identification of small molecules based on chemical biology approaches. Molecular BioSystems 9: 897–914.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y., X.C. Lu, H.Y. Yang, X.F. Liu, J. Cao, and L. Fan. 2012. The molecular mechanism of the anticancer effect of atorvastatin: DNA microarray and bioinformatic analyses. International Journal of Molecular Medicine 30: 765–774.

    CAS  PubMed  Google Scholar 

  • Giaever, G., P. Flaherty, J. Kumm, M. Proctor, C. Nislow, D.F. Jaramillo, A.M. Chu, M.I. Jordan, A.P. Arkin, and R.W. Davis. 2004. Chemogenomic profiling: Identifying the functional interactions of small molecules in yeast. Proceedings of the National Academy of Sciences of the United States of America 101: 793–798.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giaever, G., D.D. Shoemaker, T.W. Jones, H. Liang, E.A. Winzeler, A. Astromoff, and R.W. Davis. 1999. Genomic profiling of drug sensitivities via induced haploinsufficiency. Nature Genetics 21: 278–283.

    Article  CAS  PubMed  Google Scholar 

  • Glaab, E., A. Baudot, N. Krasnogor, R. Schneider, and A. Valencia. 2012. EnrichNet: network-based gene set enrichment analysis. Bioinformatics 28: i451–i457.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gray, N.S., L. Wodicka, A.M. Thunnissen, T.C. Norman, S. Kwon, F.H. Espinoza, D.O. Morgan, G. Barnes, S. LeClerc, L. Meijer, S.H. Kim, D.J. Lockhart, and P.G. Schultz. 1998. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281: 533–538.

    Article  CAS  PubMed  Google Scholar 

  • Gygi, S.P., B. Rist, S.A. Gerber, F. Turecek, M.H. Gelb, and R. Aebersold. 1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology 17: 994–999.

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo, M., F. Amant, A.V. Biankin, E. Budinská, A.T. Byrne, C. Caldas, R.B. Clarke, S. de Jong, J. Jonkers, G.M. Mælandsmo, S. Roman-Roman, J. Seoane, L. Trusolino, and A. Villanueva. 2014. Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discovery 4: 998–1013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ho, C.H., L. Magtanong, S.L. Barker, D. Gresham, S. Nishimura, P. Natarajan, J.L. Koh, J. Porter, C.A. Gray, R.J. Andersen, G. Giaever, C. Nislow, B. Andrews, D. Botstein, T.R. Graham, M. Yoshida, and C. Boone. 2009. A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nature Biotechnology 27: 369–377.

    Article  CAS  PubMed  Google Scholar 

  • Hoepfner, D., S. Karkare, S.B. Helliwell, M. Pfeifer, M. Trunzer, S. De Bonnechose, A. Zimmerlin, J. Tao, D. Richie, A. Hofmann, S. Reinker, M. Frederiksen, N.R. Movva, J.A. Porter, N.S. Ryder, and C.N. Parker. 2012. An integrated approach for identification and target validation of antifungal compounds active against Erg11p. Antimicrobial Agents and Chemotherapy 56: 4233–4240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ito, T., H. Ando, T. Suzuki, T. Ogura, K. Hotta, Y. Imamura, Y. Yamaguchi, and H. Handa. 2010. Identification of a primary target of thalidomide teratogenicity. Science 327: 1345–1350.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Z., and Y. Zhou. 2005. Using gene networks to drug target identification. Journal of Integrative Bioinformatics 2: 14.

    Google Scholar 

  • Jung, H.J., and H.J. Kwon. 2013. Exploring the role of mitochondrial UQCRB in angiogenesis using small molecules. Molecular BioSystems 9: 930–939.

    Article  CAS  PubMed  Google Scholar 

  • Jung, H.J., J.S. Shim, J. Lee, Y.M. Song, K.C. Park, S.H. Choi, N.D. Kim, J.H. Yoon, P.T. Mungai, P.T. Schumacker, and H.J. Kwon. 2010. Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. The Journal of biological chemistry 285: 11584–11595.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung, H.J., J.S. Shim, J. Park, H.J. Ha, J.H. Kim, J.G. Kim, N.D. Kim, J.H. Yoon, and H.J. Kwon. 2009. Identification and validation of calmodulin as a binding protein of an anti-proliferative small molecule 3,4-dihydroisoquinolinium salt. Proteomics Clinical Applications 3: 423–432.

    Article  CAS  PubMed  Google Scholar 

  • Kaczorowski, G.J., O.B. McManus, B.T. Priest, and M.L. Garcia. 2008. Ion channels as drug targets: The next GPCRs. The Journal of General Physiology 131: 399–405.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanehisa, M., S. Goto, Y. Sato, M. Furumichi, and M. Tanabe. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research 40(Database issue): D109–D114.

  • Kanoh, N., K. Honda, S. Simizu, M. Muroi, and H. Osada. 2005. Photo-cross-linked small-molecule affinity matrix for facilitating forward and reverse chemical genetics. Angewandte Chemie International Ed in English 44: 3559–3562.

    Article  CAS  PubMed  Google Scholar 

  • Kawatani, M., H. Okumura, K. Honda, N. Kanoh, M. Muroi, N. Dohmae, M. Takami, M. Kitagawa, Y. Futamura, M. Imoto, and H. Osada. 2008. The identification of an osteoclastogenesis inhibitor through the inhibition of glyoxalase I. Proceedings of the National Academy of Sciences of the United States of America 105: 11691–11696.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keiser, M.J., V. Setola, J.J. Irwin, C. Laggner, A.I. Abbas, S.J. Hufeisen, N.H. Jensen, M.B. Kuijer, R.C. Matos, T.B. Tran, R. Whaley, R.A. Glennon, J. Hert, K.L. Thomas, D.D. Edwards, B.K. Shoichet, and B.L. Roth. 2009. Predicting new molecular targets for known drugs. Nature 462: 175–181.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelly, W.K., and P.A. Marks. 2005. Drug insight: histone deacetylase inhibitors—Development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nature Clinical Practice Oncology 2: 150–157.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D.U., J. Hayles, D. Kim, V. Wood, H.O. Park, M. Won, H.S. Yoo, T. Duhig, M. Nam, G. Palmer, S. Han, L. Jeffery, S.T. Baek, H. Lee, Y.S. Shim, M. Lee, L. Kim, K.S. Heo, E.J. Noh, A.R. Lee, Y.J. Jang, K.S. Chung, S.J. Choi, J.Y. Park, Y. Park, H.M. Kim, S.K. Park, H.J. Park, E.J. Kang, H.B. Kim, H.S. Kang, H.M. Park, K. Kim, K. Song, K.B. Song, P. Nurse, and K.L. Hoe. 2010. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nature Biotechnology 28: 617–623.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, B.S., K. Lee, H.J. Jung, D. Bhattarai, and H.J. Kwon. 2015. HIF-1α suppressing small molecule, LW6, inhibits cancer cell growth by binding to calcineurin b homologous protein 1. Biochemical and Biophysical Research Communications 458: 14–20.

    Article  CAS  PubMed  Google Scholar 

  • Kitano, H. 2007. A robustness-based approach to systems-oriented drug design. Nature Reviews Drug Discovery 6: 202–210.

    Article  CAS  PubMed  Google Scholar 

  • Knight, Z.A., H. Lin, and K.M. Shokat. 2010. Targeting the cancer kinome through polypharmacology. Nature Reviews Cancer 10: 130–137.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kotake, Y., K. Sagane, T. Owa, Y. Mimori-Kiyosue, H. Shimizu, M. Uesugi, Y. Ishihama, M. Iwata, and Y. Mizui. 2007. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nature Chemical Biology 3: 570–575.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, H.J. 2006. Discovery of new small molecules and targets towards angiogenesis via chemical genomics approach. Current Drug Targets 7: 397–405.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., J.D. Jr, W.S. Farmer, J. Lane, I.Weissman Friedman, and S.L. Schreiber. 1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66: 807–815.

    Article  CAS  PubMed  Google Scholar 

  • Lomenick, B., R. Hao, N. Jonai, R.M. Chin, M. Aghajan, S. Warburton, J. Wang, R.P. Wu, F. Gomez, J.A. Loo, J.A. Wohlschlegel, T.M. Vondriska, J. Pelletier, H.R. Herschman, J. Clardy, C.F. Clarke, and J. Huang. 2009. Target identification using drug affinity responsive target stability (DARTS). Proceedings of the National Academy of Sciences of the United States of America 106: 21984–21989.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lomenick, B., R.W. Olsen, and J. Huang. 2011. Identification of direct protein targets of small molecules. American Chemical Society Chemical Biology 6: 34–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Low, W.K., Y. Dang, S. Bhat, D. Romo, and J.O. Liu. 2007. Substrate-dependent targeting of eukaryotic translation initiation factor 4A by pateamine A: Negation of domain-linker regulation of activity. Chemistry & Biology 14: 715–727.

    Article  CAS  Google Scholar 

  • Luesch, H. 2006. Towards high-throughput characterization of small molecule mechanisms of action. Molecular BioSystems 2: 609–620.

    Article  CAS  PubMed  Google Scholar 

  • Mangalam, A.K., G. Rajagopalan, V. Taneja, and C.S. David. 2008. HLA class II transgenic mice mimic human inflammatory diseases. Advances in Immunology 97: 65–147.

    Article  CAS  PubMed  Google Scholar 

  • Masoudi-Nejad, A., Z. Mousavian, and J.H. Bozorgmehr. 2013. Drug-target and disease networks: Polypharmacology in the post-genomic era. In Silico Pharmacology 1: 17.

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsuyama, A., R. Arai, Y. Yashiroda, A. Shirai, A. Kamata, S. Sekido, Y. Kobayashi, A. Hashimoto, M. Hamamoto, Y. Hiraoka, S. Horinouchi, and M. Yoshida. 2006. ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nature Biotechnology 24: 841–847.

    Article  CAS  PubMed  Google Scholar 

  • Moni, M.A., H. Xu, and P. Liò. 2015. CytoCom: A Cytoscape app to visualize, query and analyse disease comorbidity networks. Bioinformatics 31: 969–971.

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris, G.M., R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry 30: 2785–2791.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishi, K., M. Yoshida, D. Fujiwara, M. Nishikawa, S. Horinouchi, and T. Beppu. 1994. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. The Journal of biological chemistry 269: 6320–6324.

    CAS  PubMed  Google Scholar 

  • Nishimura, S., Y. Arita, M. Honda, K. Iwamoto, A. Matsuyama, A. Shirai, H. Kawasaki, H. Kakeya, T. Kobayashi, S. Matsunaga, and M. Yoshida. 2010. Marine antifungal theonellamides target 3beta-hydroxysterol to activate Rho1 signaling. Nature Chemical Biology 6: 519–526.

    Article  CAS  PubMed  Google Scholar 

  • Oda, Y., T. Owa, T. Sato, B. Boucher, S. Daniels, H. Yamanaka, Y. Shinohara, A. Yokoi, J. Kuromitsu, and T. Nagasu. 2003. Quantitative chemical proteomics for identifying candidate drug targets. Analytical Chemistry 75: 2159–2165.

    Article  CAS  PubMed  Google Scholar 

  • Ong, S.E., B. Blagoev, I. Kratchmarova, D.B. Kristensen, H. Steen, A. Pandey, and M. Mann. 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular and Cellular Proteomics 1: 376–386.

    Article  CAS  PubMed  Google Scholar 

  • Ong, S.E., and M. Mann. 2005. Mass spectrometry-based proteomics turns quantitative. Nature Chemical Biology 1: 252–262.

    Article  CAS  PubMed  Google Scholar 

  • Ong, S.E., M. Schenone, A.A. Margolin, X. Li, K. Do, M.K. Doud, D.R. Mani, L. Kuai, X. Wang, J.L. Wood, N.J. Tolliday, A.N. Koehler, L.A. Marcaurelle, T.R. Golub, R.J. Gould, S.L. Schreiber, and S.A. Carr. 2009. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proceedings of the National Academy of Sciences of the United States of America 106: 4617–4622.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park, J., S. Oh, and S.B. Park. 2012. Discovery and target identification of an antiproliferative agent in live cells using fluorescence difference in two-dimensional gel electrophoresis. Angewandte Chemie International Ed in English 51: 5447–5451.

    Article  CAS  PubMed  Google Scholar 

  • Paschke, M. 2006. Phage display systems and their applications. Applied Microbiology and Biotechnology 70: 2–11.

    Article  CAS  PubMed  Google Scholar 

  • Pierce, S.E., R.W. Davis, C. Nislow, and G. Giaever. 2007. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nature Protocols 2: 2958–2974.

    Article  CAS  PubMed  Google Scholar 

  • Piggott, A.M., and P. Karuso. 2004. Quality, not quantity: the role of natural products and chemical proteomics in modern drug discovery. Combinatorial Chemistry & High Throughput Screening 7: 607–630.

    Article  CAS  Google Scholar 

  • Piggott, A.M., and P. Karuso. 2008. Rapid identification of a protein binding partner for the marine natural product kahalalide F by using reverse chemical proteomics. ChemBioChem 9: 524–530.

    Article  CAS  PubMed  Google Scholar 

  • Qu, X.A., and D.K. Rajpal. 2012. Applications of Connectivity Map in drug discovery and development. Drug Discovery Today 17: 1289–1298.

    Article  CAS  PubMed  Google Scholar 

  • Roemer, T., J. Davies, G. Giaever, and C. Nislow. 2011. Bugs, drugs and chemical genomics. Nature Chemical Biology 8: 46–56.

    Article  PubMed  Google Scholar 

  • Ross, P.L., Y.N. Huang, J.N. Marchese, B. Williamson, K. Parker, S. Hattan, N. Khainovski, S. Pillai, S. Dey, S. Daniels, S. Purkayastha, P. Juhasz, S. Martin, M. Bartlet-Jones, F. He, A. Jacobson, and D.J. Pappin. 2004. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular and Cellular Proteomics 3: 1154–1169.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, S., Y. Kabe, M. Hatakeyama, Y. Yamaguchi, and H. Handa. 2009. Development and application of high-performance affinity beads: Toward chemical biology and drug discovery. Chemical Record 9: 66–85.

    Article  CAS  PubMed  Google Scholar 

  • Sato, S., Y. Kwon, S. Kamisuki, N. Srivastava, Q. Mao, Y. Kawazoe, and M. Uesugi. 2007. Polyproline-rod approach to isolating protein targets of bioactive small molecules: Isolation of a new target of indomethacin. Journal of the American Chemical Society 129: 873–880.

    Article  CAS  PubMed  Google Scholar 

  • Sato, S., A. Murata, T. Shirakawa, and M. Uesugi. 2010. Biochemical target isolation for novices: Affinity-based strategies. Chemistry & Biology 17: 616–623.

    Article  CAS  Google Scholar 

  • Savinov, S.N., and D.J. Austin. 2001. The cloning of human genes using cDNA phage display and small-molecule chemical probes. Combinatorial Chemistry & High Throughput Screening 4: 593–597.

    Article  CAS  Google Scholar 

  • Schenone, M., V. Dančík, B.K. Wagner, and P.A. Clemons. 2013. Target identification and mechanism of action in chemical biology and drug discovery. Nature Chemical Biology 9: 232–240.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, A., I. Forne, and A. Imhof. 2014. Bioinformatic analysis of proteomics data. BMC Systems Biology 8(Suppl 2): S3.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schreiber, S.L. 1998. Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorganic and Medicinal Chemistry 6: 1127–1152.

    Article  CAS  PubMed  Google Scholar 

  • Shim, J.S., J. Lee, H.J. Park, S.J. Park, and H.J. Kwon. 2004. A new curcumin derivative, HBC, interferes with the cell cycle progression of colon cancer cells via antagonization of the Ca2+/calmodulin function. Chemistry & Biology 11: 1455–1463.

    Article  CAS  Google Scholar 

  • Siolas, D., and G.J. Hannon. 2013. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Research 73: 5315–5319.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sleno, L., and A. Emili. 2008. Proteomic methods for drug target discovery. Current Opinion in Chemical Biology 12: 46–54.

    Article  CAS  PubMed  Google Scholar 

  • Stockwell, B.R. 2004. Exploring biology with small organic molecules. Nature 432: 846–854.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun, J., Y. Wu, H. Xu, and Z. Zhao. 2012. DTome: A web-based tool for drug-target interactome construction. BMC Bioinformatics 13(Suppl 9): S7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Swinney, D.C., and J. Anthony. 2011. How were new medicines discovered? Nature Reviews Drug Discovery 10: 507–519.

    Article  CAS  PubMed  Google Scholar 

  • Taunton, J., J.L. Collins, and S.L. Schreiber. 1996. Synthesis of natural and modified trapoxins, useful reagents for exploring histone deacetylase function. Journal of the American Chemical Society 118: 10412.

    Article  CAS  Google Scholar 

  • Tran, D.T., J. Adhikari, and M.C. Fitzgerald. 2014. Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions. Molecular and Cellular Proteomics 13: 1800–1813.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ueda, M. 2012. Chemical biology of natural products on the basis of identification of target proteins. Chemistry Letters 41: 658–666.

    Article  CAS  Google Scholar 

  • Wacker, S.A., B.R. Houghtaling, O. Elemento, and T.M. Kapoor. 2012. Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nature Chemical Biology 8: 235–237.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walsh, D.P., and Y.T. Chang. 2006. Chemical genetics. Chemical Reviews 106: 2476–2530.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., and J. Zeng. 2013. Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 29: i126–i134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, J., C.J. Zhang, J. Zhang, Y. He, Y.M. Lee, S. Chen, T.K. Lim, S. Ng, H.M. Shen, and Q. Lin. 2015. Mapping sites of aspirin-induced acetylations in live cells by quantitative acid-cleavable activity-based protein profiling (QA-ABPP). Scientific Reports 5: 7896.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Z. Zhao, J. Shang, and W. Xia. 2014. Targets and candidate agents for type 2 diabetes treatment with computational bioinformatics approach. Journal of Diabetes Research 2014: 763936.

    PubMed Central  PubMed  Google Scholar 

  • Weber, A., A. Casini, A. Heine, D. Kuhn, C.T. Supuran, A. Scozzafava, and G. Klebe. 2004. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. Journal of Medicinal Chemistry 47: 550–557.

    Article  CAS  PubMed  Google Scholar 

  • Wermuth, C.G. 2004. Multitargeted drugs: the end of the “one-target-one-disease” philosophy? Drug Discovery Today 9: 826–827.

    Article  PubMed  Google Scholar 

  • West, G.M., C.L. Tucker, T. Xu, S.K. Park, X. Han, J.R. Yates III, and M.C. Fitzgerald. 2010. Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements. Proceedings of the National Academy of Sciences of the United States of America 107: 9078–9082.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wieghaus, K.A., E.P. Gianchandani, M.A. Paige, M.L. Brown, E.A. Botchwey, and J.A. Papin. 2008. Novel pathway compendium analysis elucidates mechanism of pro-angiogenic synthetic small molecule. Bioinformatics 24: 2384–2390.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie, L., L. Xie, S.L. Kinnings, and P.E. Bourne. 2012. Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annual Review of Pharmacology and Toxicology 52: 361–379.

    Article  CAS  PubMed  Google Scholar 

  • Yamanishi, Y., M. Araki, A. Gutteridge, W. Honda, and M. Kanehisa. 2008. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24: i232–i240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaoka, M., K. Sato, M. Kobayashi, N. Nishio, M. Ohkubo, T. Fujii, and H. Nakajima. 2005. FR177391, a new anti-hyperlipidemic agent from Serratia. IV. Target identification and validation by chemical genetic approaches. The Journal of Antibiotics 58: 654–662.

    Article  CAS  PubMed  Google Scholar 

  • Yashiroda, Y., A. Matsuyama, and M. Yoshida. 2008. New insights into chemical biology from ORFeome libraries. Current Opinion in Chemical Biology 12: 55–59.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler, S., V. Pries, C. Hedberg, and H. Waldmann. 2013. Target identification for small bioactive molecules: Finding the needle in the haystack. Angewandte Chemie International Ed in English 52: 2744–2792.

    Article  CAS  PubMed  Google Scholar 

  • Zuber, J., J. Shi, E. Wang, A.R. Rappaport, H. Herrmann, E.A. Sison, D. Magoon, J. Qi, K. Blatt, M. Wunderlich, M.J. Taylor, C. Johns, A. Chicas, J.C. Mulloy, S.C. Kogan, P. Brown, P. Valent, J.E. Bradner, S.W. Lowe, and C.R. Vakoc. 2011. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478: 524–528.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by grants from the National Research Foundation of Korea (NRF) funded by the Korean Government (2010-0017984 and 2012M3A9D1054520), the Translational Research Center for Protein Function Control, KRF (2009-0083522), the Ministry of Health & Welfare (0620360-1), the Basic Science Research Program, the Ministry of Education (NRF-2014R1A1A2057902), and the Brain Korea 21 Plus Project, Republic of Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Jeong Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H.J., Kwon, H.J. Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery. Arch. Pharm. Res. 38, 1627–1641 (2015). https://doi.org/10.1007/s12272-015-0618-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0618-3

Keywords

Navigation