Skip to main content
Log in

Amniotic fluid-derived stem cells in regenerative medicine research

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The stem cells isolated from amniotic fluid present an exciting possible contribution to the field of regenerative medicine and amniotic fluid-derived stem (AFS) cells have significant potential for research and therapeutic applications. AFS cells are multipotent, showing the ability to differentiate into cell types from all three embryonic germ layers. They express both embryonic and adult stem cell markers, expand extensively without feeder cells, double in 36 h, and are not tumorigenic. The AFS cells can be maintained for over 250 population doublings and preserve their telomere length and a normal karyotype. They differentiate easily into specific cell lineages and do not require human embryo tissue for their isolation, thus avoiding the current controversies associated with the use of human embryonic stem (ES) cells. The discovery of the AFS cells has been recent, and a great deal of work remains to be performed on the characterization and use of these cells. This review describes the various differentiated lineages that AFS cells can form and the future of these promising new stem cells in regenerative medicine research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., and Retik, A. B., Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 367, 1241–1246 (2006).

    Article  PubMed  Google Scholar 

  • Atala, A., Engineering tissues, organs and cells. J. Tissue Eng. Regen. Med., 1, 83–96 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Atala, A., Amniotic Fluid-Derived Pluripotential Cells. Chapter 16 in Essentials of Stem Cell Biology. Elsevier Inc., 145–150 (2009).

  • Bollini, S., Pozzobon, M., Nobles, M., Riegler, J., Dong, X., Piccoli, M., Chiavegato, A., Price, A. N., Ghionzoli, M., Cheung, K. K., Cabrelle, A., O’mahoney, P. R., Cozzi, E., Sartore, S., Tinker, A., Lythgoe, M. F., and De Coppi, P., In vitro and in vivo cardiomyogenic differentiation of amniotic fluid stem cells. Stem Cell Rev., 7, 364–380 (2011).

    Article  PubMed  Google Scholar 

  • Brace, R. A., Ross, M. G., and Robillard, J. E., Fetal and neonatal body fluids: The scientific basis for clinical practice. Perinatology Press, New York, (1989).

    Google Scholar 

  • Bryan, T. M., Englezou, A., Dunham, M. A., and Reddel, R. R., Telomere length dynamics in telomerase-positive immortal human cell populations. Exp. Cell Res., 239, 370–378 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Caplan, A. I. and Dennis, J. E., Mesenchymal stem cells as trophic mediators. J. Cell. Biochem., 98, 1076–1084 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Carraro, G., Perin, L., Sedrakyan, S., Giuliani, S., Tiozzo, C., Lee, J., Turcatel, G., De Langhe, S. P., Driscoll, B., Bellusci, S., Minoo, P., Atala, A., De Filippo, R. E., and Warburton, D., Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells, 26, 2902–2911 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Chazan, J. A., Libbey, N. P., London, M. R., Pono, L., and Abuelo, J. G., The clinical spectrum of renal osteodystrophy in 57 chronic hemodialysis patients: a correlation between biochemical parameters and bone pathology findings. Clin. Nephrol., 35, 78–85 (1991).

    PubMed  CAS  Google Scholar 

  • Cremer, M., Schachner, M., Cremer, T., Schmidt, W., and Voigtlander, T., Demonstration of astrocytes in cultured amniotic fluid cells of three cases with neural-tube defect. Hum. Genet., 56, 365–370 (1981).

    Article  PubMed  CAS  Google Scholar 

  • De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., Xu, T., Santos, C. C., Perin, L., Mostoslavsky, G., Serre, A. C., Snyder, E. Y., Yoo, J. J., Furth, M. E., Soker, S., and Atala, A., Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol., 25, 100–106 (2007a).

    Article  PubMed  Google Scholar 

  • De Coppi, P., Callegari, A., Chiavegato, A., Gasparotto, L., Piccoli, M., Taiani, J., Pozzobon, M., Boldrin, L., Okabe, M., Cozzi, E., Atala, A., Gamba, P., and Sartore, S., Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J. Urol., 177, 369–376 (2007b).

    Article  PubMed  Google Scholar 

  • Fauza, D. O., Marler, J. J., Koka, R., Forse, R. A., Mayer, J. E., and Vacanti, J. P., Fetal tissue engineering: diaphragmatic replacement. J. Pediatr. Surg., 36, 146–151 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, J. R., Kaviani, A., Oh, J. T., Lavan, D., Udagawa, T., Jennings, R. W., Wilson, J. M., and Fauza, D. O., Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J. Pediatr. Surg., 39, 834–838; discussion 834–838 (2004).

    Article  PubMed  Google Scholar 

  • Kolambkar, Y. M., Peister, A., Soker, S., Atala, A., and Guldberg, R. E., Chondrogenic differentiation of amniotic fluid-derived stem cells. J. Mol. Histol., 38, 405–413 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Kunisaki, S. M., Fuchs, J. R., Steigman, S. A., and Fauza, D. O., A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells. Tissue Eng., 13, 2633–2644 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Langer, R. and Vacanti, J. P., Tissue engineering. Science, 260, 920–926 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Lee, W. Y., Wei, H. J., Lin, W. W., Yeh, Y. C., Hwang, S. M., Wang, J. J., Tsai, M. S., Chang, Y., and Sung, H. W., Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stemcell bodies enriched with endogenous ECM. Biomaterials, 32, 5558–5567 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Medina-Gomez, P. and Johnston, T. H., Cell morphology in long-term cultures of normal and abnormal amniotic fluids. Hum. Genet., 60, 310–313 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Menasche, P., Cell-based therapy for heart disease: a clinically oriented perspective. Mol. Ther., 17, 758–766 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Ojo, A. O., Hanson, J. A., Wolfe, R. A., Leichtman, A. B., Agodoa, L. Y., and Port, F. K., Long-term survival in renal transplant recipients with graft function. Kidney Int., 57, 307–313 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Ojo, A. O., Hanson, J. A., Meier-Kriesche, H., Okechukwu, C. N., Wolfe, R. A., Leichtman, A. B., Agodoa, L. Y., Kaplan, B., and Port, F. K., Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates. J. Am. Soc. Nephrol., 12, 589–597 (2001).

    PubMed  CAS  Google Scholar 

  • Pan, G. J., Chang, Z. Y., Scholer, H. R., and Pei, D., Stem cell pluripotency and transcription factor Oct4. Cell Res., 12, 321–329 (2002).

    Article  PubMed  Google Scholar 

  • Peister, A., Deutsch, E. R., Kolambkar, Y., Hutmacher, D. W., and Guldberg, R. E. Amniotic fluid stem cells produce robust mineral deposits on biodegradable scaffolds. Tissue Eng. Part A, 15, 3129–3138 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Perin, L., Giuliani, S., Jin, D., Sedrakyan, S., Carraro, G., Habibian, R., Warburton, D., Atala, A., and De Filippo, R. E., Renal differentiation of amniotic fluid stem cells. Cell Prolif., 40, 936–948 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Perin, L., Sedrakyan, S., Giuliani, S., Da Sacco, S., Carraro, G., Shiri, L., Lemley, K. V., Rosol, M., Wu, S., Atala, A., Warburton, D., and De Filippo, R. E., Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS ONE, 5, e9357 (2010).

    Article  PubMed  Google Scholar 

  • Polgar, K., Adany, R., Abel, G., Kappelmayer, J., Muszbek, L., and Papp, Z., Characterization of rapidly adhering amniotic fluid cells by combined immunofluorescence and phagocytosis assays. Am. J. Hum. Genet., 45, 786–792 (1989).

    PubMed  CAS  Google Scholar 

  • Pozzobon, M., Ghionzoli, M., and De Coppi, P., ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective. Pediatr. Surg. Int., 26, 3–10 (2010).

    Article  PubMed  Google Scholar 

  • Prasongchean, W., Bagni, M., Calzarossa, C., De Coppi, P., and Ferretti, P., Amniotic fluid stem cells increase embryo survival following injury. Stem Cells Dev., DOI 10.1089/scd.2011.0281 (2011).

  • Priest, R. E., Marimuthu, K. M., and Priest, J. H., Origin of cells in human amniotic fluid cultures: ultrastructural features. Lab. Invest., 39, 106–109 (1978).

    PubMed  CAS  Google Scholar 

  • Raya-Rivera, A., Esquiliano, D. R., Yoo, J. J., Lopez-Bayghen, E., Soker, S., and Atala, A., Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet, 377, 1175–1182 (2011).

    Article  PubMed  Google Scholar 

  • Steigman, S. A., Ahmed, A., Shanti, R. M., Tuan, R. S., Valim, C., and Fauza, D. O., Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J. Pediatr. Surg., 44, 1120–1126; discussion 1126 (2009).

    Article  PubMed  Google Scholar 

  • Sun, H., Feng, K., Hu, J., Soker, S., Atala, A., and Ma, P. X., Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials, 31, 1133–1139 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Teodelinda, M., Michele, C., Sebastiano, C., Ranieri, C., and Chiara, G., Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neoarteriogenesis in an ischemic model. Biomaterials, 32, 3689–3699 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M., Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Trounson, A., A fluid means of stem cell generation. Nat. Biotechnol., 25, 62–63 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Von Koskull, H., Virtanen, I., Lehto, V. P., Vartio, T., Dahl, D., and Aula, P., Glial and neuronal cells in amniotic fluid of anencephalic pregnancies. Prenat. Diagn., 1, 259–267 (1981).

    Article  Google Scholar 

  • Weber, B., Zeisberger, S. M., and Hoerstrup, S. P. Prenatally harvested cells for cardiovascular tissue engineering: fabrication of autologous implants prior to birth. Placenta, 32Suppl 4, S316–S319 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Yeh, Y. C., Lee, W. Y., Yu, C. L., Hwang, S. M., Chung, M. F., Hsu, L. W., Chang, Y., Lin, W. W., Tsai, M. S., Wei, H. J., and Sung, H. W., Cardiac repair with injectable cell sheet fragments of human amniotic fluid stem cells in an immune-suppressed rat model. Biomaterials, 31, 6444–6453 (2010a).

    Article  PubMed  CAS  Google Scholar 

  • Yeh, Y. C., Wei, H. J., Lee, W. Y., Yu, C. L., Chang, Y., Hsu, L. W., Chung, M. F., Tsai, M. S., Hwang, S. M., and Sung, H. W., Cellular cardiomyoplasty with human amniotic fluid stem cells: in vitro and in vivo studies. Tissue Eng. Part A, 16, 1925–1936 (2010b).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Jin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, S., Ko, I.K., Atala, A. et al. Amniotic fluid-derived stem cells in regenerative medicine research. Arch. Pharm. Res. 35, 271–280 (2012). https://doi.org/10.1007/s12272-012-0207-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0207-7

Keyw words

Navigation