Skip to main content
Log in

Trajectories of Circulating Monocyte Subsets After ST-Elevation Myocardial Infarction During Hospitalization: Latent Class Growth Modeling for High-Risk Patient Identification

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

It remains unclear if the developmental trajectories of a specific inflammatory biomarker during the acute phase of ST-elevation myocardial infarction (STEMI) provide outcome prediction. By applying latent class growth modeling (LCGM), we identified three distinctive trajectories of CD14++CD16+ monocytes using serial flow cytometry assays from day 1 to day 7 of symptom onset in 96 de novo STEMI patients underwent primary percutaneous coronary intervention. Membership in the high-hump-shaped trajectory (16.8%) independently predicted adverse cardiovascular outcomes during a median follow-up of 2.5 years. Moreover, inclusion of CD14++CD16+ monocyte trajectories significantly improved area under the curve (AUC) when added to left ventricular ejection fraction-based prediction model (ΔAUC = 0.093, P = 0.013). Therefore, CD14++CD16+ monocyte trajectories during STEMI hospitalization are a novel risk factor for post-STEMI adverse outcomes. These results provide the first proof-of-principle evidence in support of the risk stratification role of LCGM-based longitudinal modeling of specific inflammatory markers during acute STEMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BP:

Blood pressure

CHD:

Coronary heart disease

CI:

Confidence interval

FCM:

Flow cytometry

FMO:

Fluorescence Minus One

HR:

Hazard ratio

LCGM:

Latent class growth modeling

LVEF:

Left ventricular ejection fraction

MACE:

Major adverse cardiovascular events

MI:

Myocardial infarction

OR:

Odds ratio

PCI:

Percutaneous coronary intervention

ROC:

Receiver operator characteristic curve

STEMI:

ST-elevation myocardial infarction

WBC:

White blood cell

References

  1. Frangogiannis, N. G. (2014). The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews Cardiology, 11(5), 255–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Seropian, I. M., Toldo, S., Van Tassell, B. W., & Abbate, A. (2014). Anti-inflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. Journal of the American College of Cardiology, 63(16), 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  3. Westman, P. C., Lipinski, M. J., Luger, D., Waksman, R., Bonow, R. O., Wu, E., et al. (2016). Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. Journal of the American College of Cardiology, 67(17), 2050–2060.

    Article  PubMed  Google Scholar 

  4. Swirski, F. K., & Nahrendorf, M. (2013). Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science, 339(6116), 161–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Panizzi, P., Swirski, F. K., Figueiredo, J. L., Waterman, P., Sosnovik, D. E., Aikawa, E., et al. (2010). Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. Journal of the American College of Cardiology, 55(15), 1629–1638.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tapp, L. D., Shantsila, E., Wrigley, B. J., Pamukcu, B., & Lip, G. Y. (2012). The CD14++CD16+ monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocardial infarction. Journal of Thrombosis and Haemostasis, 10(7), 1231–1241.

    Article  CAS  PubMed  Google Scholar 

  7. Dutta, P., Courties, G., Wei, Y., Leuschner, F., Gorbatov, R., Robbins, C. S., et al. (2012). Myocardial infarction accelerates atherosclerosis. Nature, 487(7407), 325–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D. N., et al. (2010). Nomenclature of monocytes and dendritic cells in blood. Blood, 116(16), e74–e80.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, X., Zhang, L., Ji, W. J., Yuan, F., Guo, Z. Z., Pang, B., et al. (2013). Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation. PLoS One, 8(4), e60332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rogacev, K. S., Cremers, B., Zawada, A. M., Seiler, S., Binder, N., Ege, P., et al. (2012). CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. Journal of the American College of Cardiology, 60(16), 1512–1520.

    Article  CAS  PubMed  Google Scholar 

  11. Rogacev, K. S., Seiler, S., Zawada, A. M., Reichart, B., Herath, E., Roth, D., et al. (2011). CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. European Heart Journal, 32(1), 84–92.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, X., Liu, X. L., Ji, W. J., Liu, J. X., Guo, Z. Z., Ren, D., et al. (2016). The kinetics of circulating monocyte subsets and monocyte-platelet aggregates in the acute phase of ST-elevation myocardial infarction: associations with 2-year cardiovascular events. Medicine (Baltimore), 95(18), e3466.

    Article  CAS  Google Scholar 

  13. Nagin, D. S., & Odgers, C. L. (2010). Group-based trajectory modeling in clinical research. Annual Review of Clinical Psychology, 6, 109–138.

    Article  PubMed  Google Scholar 

  14. Allen, N. B., Siddique, J., Wilkins, J. T., Shay, C., Lewis, C. E., Goff, D. C., et al. (2014). Blood pressure trajectories in early adulthood and subclinical atherosclerosis in middle age. JAMA, 311(5), 490–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song, M., Hu, F. B., Wu, K., Must, A., Chan, A. T., Willett, W. C., et al. (2016). Trajectory of body shape in early and middle life and all cause and cause specific mortality: results from two prospective US cohort studies. BMJ, 353, i2195.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ginhoux, F., & Jung, S. (2014). Monocytes and macrophages: developmental pathways and tissue homeostasis. Nature Reviews Immunology, 14(6), 392–404.

    Article  CAS  PubMed  Google Scholar 

  17. Lei, Q., Zhou, X., Zhou, Y. H., Mai, C. Y., Hou, M. M., Lv, L. J., et al. (2016). Prehypertension during normotensive pregnancy and postpartum clustering of cardiometabolic risk factors: a prospective cohort study. Hypertension, 68(2), 455–463.

    Article  CAS  PubMed  Google Scholar 

  18. Steg, P. G., James, S. K., Atar, D., Badano, L. P., Blomstrom-Lundqvist, C., Borger, M. A., et al. (2012). ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. European Heart Journal, 33(20), 2569–2619.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, X., Yuan, F., Ji, W. J., Guo, Z. Z., Zhang, L., Lu, R. Y., et al. (2014). High-salt intake induced visceral adipose tissue hypoxia and its association with circulating monocyte subsets in humans. Obesity (Silver Spring), 22(6), 1470–1476.

    Article  CAS  Google Scholar 

  20. Ma, Y. C., Zuo, L., Chen, J. H., Luo, Q., Yu, X. Q., Li, Y., et al. (2006). Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol, 17(10), 2937–2944.

    Article  PubMed  Google Scholar 

  21. Jones, B. L., & Nagin, D. S. (2012). A note on a Stata plugin for estimating group-based trajectory models. Sociological Methods & Research, 42(4), 608–613.

    Article  Google Scholar 

  22. Nagin, D. S. (2005). Group-based modeling of development. Cambridge: Harvard University Press.

    Book  Google Scholar 

  23. Kagura, J., Adair, L. S., Munthali, R. J., Pettifor, J. M., & Norris, S. A. (2016). Association between early life growth and blood pressure trajectories in black south African children. Hypertension, 68(5), 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  24. Theodore, R. F., Broadbent, J., Nagin, D., Ambler, A., Hogan, S., Ramrakha, S., et al. (2015). Childhood to early-midlife systolic blood pressure trajectories: early-life predictors, effect modifiers, and adult cardiovascular outcomes. Hypertension, 66(6), 1108–1115.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Niyonkuru, C., Wagner, A. K., Ozawa, H., Amin, K., Goyal, A., & Fabio, A. (2013). Group-based trajectory analysis applications for prognostic biomarker model development in severe TBI: a practical example. Journal of Neurotrauma, 30(11), 938–945.

    Article  PubMed  Google Scholar 

  26. Cole, D. R., Singian, E. B., & Katz, L. N. (1954). The long-term prognosis following myocardial infarction, and some factors which affect it. Circulation, 9(3), 321–334.

    Article  CAS  PubMed  Google Scholar 

  27. Palmerini, T., Mehran, R., Dangas, G., Nikolsky, E., Witzenbichler, B., Guagliumi, G., et al. (2011). Impact of leukocyte count on mortality and bleeding in patients with myocardial infarction undergoing primary percutaneous coronary interventions: analysis from the harmonizing outcome with revascularization and stent in acute myocardial infarction trial. Circulation, 123(24), 2829–2837 2827 p following 2837.

    Article  PubMed  Google Scholar 

  28. Chia, S., Nagurney, J. T., Brown, D. F., Raffel, O. C., Bamberg, F., Senatore, F., et al. (2009). Association of leukocyte and neutrophil counts with infarct size, left ventricular function and outcomes after percutaneous coronary intervention for ST-elevation myocardial infarction. The American Journal of Cardiology, 103(3), 333–337.

    Article  CAS  PubMed  Google Scholar 

  29. Horne, B. D., Anderson, J. L., John, J. M., Weaver, A., Bair, T. L., Jensen, K. R., et al. (2005). Which white blood cell subtypes predict increased cardiovascular risk? Journal of the American College of Cardiology, 45(10), 1638–1643.

    Article  PubMed  Google Scholar 

  30. Ammirati, E., Cannistraci, C. V., Cristell, N. A., Vecchio, V., Palini, A. G., Tornvall, P., et al. (2012). Identification and predictive value of interleukin-6+ interleukin-10+ and interleukin-6- interleukin-10+ cytokine patterns in ST-elevation acute myocardial infarction. Circulation Research, 111(10), 1336–1348.

    Article  CAS  PubMed  Google Scholar 

  31. Ruparelia, N., Godec, J., Lee, R., Chai, J. T., Dall’Armellina, E., McAndrew, D., et al. (2015). Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans. European Heart Journal, 36(29), 1923–1934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zawada, A. M., Rogacev, K. S., Rotter, B., Winter, P., Marell, R. R., Fliser, D., et al. (2011). SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood, 118(12), e50–e61.

    Article  CAS  PubMed  Google Scholar 

  33. Italiani, P., & Boraschi, D. (2014). From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology, 5, 514.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Heidt, T., Sager, H. B., Courties, G., Dutta, P., Iwamoto, Y., Zaltsman, A., et al. (2014). Chronic variable stress activates hematopoietic stem cells. Nature Medicine, 20(7), 754–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wong, K. L., Tai, J. J., Wong, W. C., Han, H., Sem, X., Yeap, W. H., et al. (2011). Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood, 118(5), e16–e31.

    Article  CAS  PubMed  Google Scholar 

  36. Foster, G. A., Gower, R. M., Stanhope, K. L., Havel, P. J., Simon, S. I., & Armstrong, E. J. (2013). On-chip phenotypic analysis of inflammatory monocytes in atherogenesis and myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weber, C., Shantsila, E., Hristov, M., Caligiuri, G., Guzik, T., Heine, G. H., et al. (2016). Role and analysis of monocyte subsets in cardiovascular disease. Joint consensus document of the European Society of Cardiology (ESC) Working Groups “Atherosclerosis & Vascular Biology” and “Thrombosis”. Thrombosis and Haemostasis, 116(4), 626–637.

    Article  PubMed  Google Scholar 

  38. Tallone, T., Turconi, G., Soldati, G., Pedrazzini, G., Moccetti, T., & Vassalli, G. (2011). Heterogeneity of human monocytes: an optimized four-color flow cytometry protocol for analysis of monocyte subsets. Journal of Cardiovascular Translational Research, 4(2), 211–219.

    Article  PubMed  Google Scholar 

  39. Thomas, G. D., Hamers, A. A. J., Nakao, C., Marcovecchio, P., Taylor, A. M., McSkimming, C., et al. (2017). Human blood monocyte subsets: a new gating strategy defined using cell surface markers identified by mass cytometry. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(8), 1548–1558.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81570335) and Intra-mural research grants from Pingjin Hospital (FYZ201402, FYZ201605).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Jie Ji or Xin Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was approved by the Ethical Committee of Pingjin Hospital and performed in accordance with the Declaration of Helsinki.

Informed Consent

Informed written consent was obtained from all participants for being included in the study.

Electronic supplementary material

ESM 1

(DOCX 489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, S., Yan, LF., Luo, YW. et al. Trajectories of Circulating Monocyte Subsets After ST-Elevation Myocardial Infarction During Hospitalization: Latent Class Growth Modeling for High-Risk Patient Identification. J. of Cardiovasc. Trans. Res. 11, 22–32 (2018). https://doi.org/10.1007/s12265-017-9782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-017-9782-9

Keywords

Navigation