Skip to main content
Log in

Genome-Wide Association Studies of Hypertension: Have They Been Fruitful?

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Over the last two decades candidate gene association studies and genome-wide linkage scans have met with little success in characterizing risk variants for hypertension. Several factors could be responsible for the relative lack of success, although our understanding of the genetics has evolved to support the belief that there are multiple common risk variants, which are associated with hypertension with modest effect sizes. Genome-wide association studies (GWAS) have successfully identified risk loci for several complex polygenic disease states. Until recently, the productivity of GWAS with respect to identifying risk loci for hypertension was limited. In this paper we describe the recent success of GWAS of hypertension in identifying over a dozen loci associated with essential hypertension. We will review these findings, and place these results in the context of the future potential of pharmocogenetics of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benjamin, E. J., et al. (1994). Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. Journal of the American Medical Association, 271(11), 840–844.

    Article  CAS  PubMed  Google Scholar 

  2. Kannel, W. B., et al. (1972). Role of blood pressure in the development of congestive heart failure. The Framingham study. New England Journal of Medicine, 287(16), 781–787.

    Article  CAS  PubMed  Google Scholar 

  3. MacMahon, S., et al. (1990). Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet, 335(8692), 765–774.

    Article  CAS  PubMed  Google Scholar 

  4. Lifton, R. P., Gharavi, A. G., & Geller, D. S. (2001). Molecular mechanisms of human hypertension. Cell, 104(4), 545–556.

    Article  CAS  PubMed  Google Scholar 

  5. Newton-Cheh, C., et al. (2009). Genome-wide association study identifies eight loci associated with blood pressure. Nature Genetics.

  6. Levy, D., et al. (2009). Genome-wide association study of blood pressure and hypertension. Nature Genetics.

  7. Pickering, T. G. (1994). Blood pressure measurement and detection of hypertension. Lancet, 344(8914), 31–35.

    Article  CAS  PubMed  Google Scholar 

  8. Fagard, R. H., et al. (2000). Response to antihypertensive therapy in older patients with sustained and nonsustained systolic hypertension. Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Circulation, 102(10), 1139–1144.

    CAS  PubMed  Google Scholar 

  9. Staessen, J. A., et al. (2003). Essential hypertension. Lancet, 361(9369), 1629–1641.

    Article  PubMed  Google Scholar 

  10. Harrap, S. B. (1994). Hypertension: genes versus environment. Lancet, 344(8916), 169–171.

    Article  CAS  PubMed  Google Scholar 

  11. Levy, D., et al. (2000). Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham heart study. Hypertension, 36(4), 477–483.

    CAS  PubMed  Google Scholar 

  12. Fuentes, R. M., et al. (2000). Familial aggregation of blood pressure: a population-based family study in eastern Finland. Journal of Human Hypertension, 14(7), 441–445.

    Article  CAS  PubMed  Google Scholar 

  13. Hong, Y., et al. (1997). Genetic and environmental architecture of the features of the insulin-resistance syndrome. American Journal of Human Genetics, 60(1), 143–152.

    CAS  PubMed  Google Scholar 

  14. Luft, F. C. (2001). Twins in cardiovascular genetic research. Hypertension, 37(2 Part 2), 350–356.

    CAS  PubMed  Google Scholar 

  15. Scherrer, J. F., et al. (2003). A twin study of depression symptoms, hypertension, and heart disease in middle-aged men. Psychosomatic Medicine, 65(4), 548–557.

    Article  PubMed  Google Scholar 

  16. Feinleib, M., et al. (1977). The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. American Journal of Epidemiology, 106(4), 284–285.

    CAS  PubMed  Google Scholar 

  17. Hunt, S. C., et al. (1989). Genetic heritability and common environmental components of resting and stressed blood pressures, lipids, and body mass index in Utah pedigrees and twins. American Journal of Epidemiology, 129(3), 625–638.

    CAS  PubMed  Google Scholar 

  18. Slattery, M. L., et al. (1988). Lifestyle and blood pressure levels in male twins in Utah. Genetic Epidemiology, 5(4), 277–287.

    Article  CAS  PubMed  Google Scholar 

  19. Williams, P. D., et al. (1992). Platelet cytosolic free calcium concentration, total plasma calcium concentration and blood pressure in human twins: a genetic analysis. Clinical Science (London, England), 82(5), 493–504.

    CAS  Google Scholar 

  20. Williams, P. D., et al. (1993). Genetic and environmental covariance of serum cholesterol and blood pressure in female twins. Atherosclerosis, 100(1), 19–31.

    Article  CAS  PubMed  Google Scholar 

  21. Fagard, R., et al. (1995). Heritability of conventional and ambulatory blood pressures. A study in twins. Hypertension, 26(6 Pt 1), 919–924.

    CAS  PubMed  Google Scholar 

  22. Somes, G. W., et al. (1995). Genetic influences on ambulatory blood pressure patterns. The Medical College of Virginia Twin Study. American Journal of Hypertension, 8(5 Pt 1), 474–478.

    Article  CAS  PubMed  Google Scholar 

  23. Dyer, A. R., & Elliott, P. (1989). The INTERSALT study: relations of body mass index to blood pressure. INTERSALT Co-operative Research Group. Journal of Human Hypertension, 3(5), 299–308.

    CAS  PubMed  Google Scholar 

  24. Midgley, J. P., et al. (1996). Effect of reduced dietary sodium on blood pressure: a meta-analysis of randomized controlled trials. Journal of the American Medical Association, 275(20), 1590–1597.

    Article  CAS  PubMed  Google Scholar 

  25. Wareham, N. J., et al. (2000). Quantifying the association between habitual energy expenditure and blood pressure. International Journal of Epidemiology, 29(4), 655–660.

    Article  CAS  PubMed  Google Scholar 

  26. Wilk, J. B., et al. (2004). Genome-wide linkage analyses for age at diagnosis of hypertension and early-onset hypertension in the HyperGEN study. American Journal of Hypertension, 17(9), 839–844.

    Article  CAS  PubMed  Google Scholar 

  27. Arnett, D. K., et al. (2007). Relevance of genetics and genomics for prevention and treatment of cardiovascular disease: a scientific statement from the American Heart Association Council on Epidemiology and Prevention, the Stroke Council, and the Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation, 115(22), 2878–2901.

    Article  PubMed  Google Scholar 

  28. Cusi, D., et al. (1997). Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet, 349(9062), 1353–1357.

    Article  CAS  PubMed  Google Scholar 

  29. Ji, W., et al. (2008). Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nature Genetics, 40(5), 592–599.

    Article  CAS  PubMed  Google Scholar 

  30. Tobin, M. D., et al. (2008). Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension, 51(6), 1658–1664.

    Article  CAS  PubMed  Google Scholar 

  31. Wellcome Trust Case Control Consortium. (2007). Genome-wide association study of 14, 000 cases of seven common disease and 3, 000 shared controls. Nature, 447(7145), 661–668.

    Article  CAS  Google Scholar 

  32. Lifton, R. P. (1996). Molecular genetics of human blood pressure variation. Science, 272(5262), 676–680.

    Article  CAS  PubMed  Google Scholar 

  33. Sober, S., et al. (2009). Targeting 160 candidate genes for blood pressure regulation with a genome-wide genotyping array. PLoS ONE, 4(6), e6034.

    Article  PubMed  CAS  Google Scholar 

  34. Pare, G., et al. (2007). Genetic analysis of 103 candidate genes for coronary artery disease and associated phenotypes in a founder population reveals a new association between endothelin-1 and high-density lipoprotein cholesterol. American Journal of Human Genetics, 80(4), 673–682.

    Article  CAS  PubMed  Google Scholar 

  35. Morgan, T. M., et al. (2007). Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study. Journal of the American Medical Association, 297(14), 1551–1561.

    Article  CAS  PubMed  Google Scholar 

  36. Barrett, J. C., & Cardon, L. R. (2006). Evaluating coverage of genome-wide association studies. Nature Genetics, 38(6), 659–662.

    Article  CAS  PubMed  Google Scholar 

  37. Padmanabhan, S., et al. (2008). Hypertension and genome-wide association studies: combining high fidelity phenotyping and hypercontrols. Journal of Hypertension, 26(7), 1275–1281.

    Article  CAS  PubMed  Google Scholar 

  38. Sabatti, C., et al. (2009). Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nature Genetics, 41(1), 35–46.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y., et al. (2009). From the cover: whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 226–231.

    Article  CAS  PubMed  Google Scholar 

  40. Org, E., et al. (2009). Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Human Molecular Genetics, 18(12), 2288–2296.

    Article  CAS  PubMed  Google Scholar 

  41. Arnett, D. K., Claas, S. A., & Glasser, S. P. (2006). Pharmacogenetics of antihypertensive treatment. Vascular Pharmacology, 44(2), 107–118.

    Article  CAS  PubMed  Google Scholar 

  42. Arnett, D. K., et al. (2005). Pharmacogenetic association of the angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure and cardiovascular risk in relation to antihypertensive treatment: the Genetics of Hypertension-Associated Treatment (GenHAT) study. Circulation, 111(25), 3374–3383.

    Article  CAS  PubMed  Google Scholar 

  43. Filigheddu, F., et al. (2008). Clinical variables, not RAAS polymorphisms, predict blood pressure response to ACE inhibitors in Sardinians. Pharmacogenomics, 9(10), 1419–1427.

    Article  CAS  PubMed  Google Scholar 

  44. Psaty, B. M., et al. (2002). Diuretic therapy, the alpha-adducin gene variant, and the risk of myocardial infarction or stroke in persons with treated hypertension. Journal of the American Medical Association, 287(13), 1680–1689.

    Article  CAS  PubMed  Google Scholar 

  45. van Wieren-de Wijer, D. B., et al. (2009). Interaction between the Gly460Trp alpha-adducin gene variant and diuretics on the risk of myocardial infarction. Journal of Hypertension, 27(1), 61–68.

    Article  PubMed  CAS  Google Scholar 

  46. Lynch, A. I., et al. (2008). Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension. Journal of the American Medical Association, 299(3), 296–307.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafiq, S., Anand, S. & Roberts, R. Genome-Wide Association Studies of Hypertension: Have They Been Fruitful?. J. of Cardiovasc. Trans. Res. 3, 189–196 (2010). https://doi.org/10.1007/s12265-010-9183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9183-9

Keywords

Navigation