Skip to main content

Advertisement

Log in

Selective Inhibition of HIF1α Expression by ZnSO4 Has Antitumoral Effects in Human Melanoma

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Zinc as an essential trace metal is a ubiquitous component of various molecules of the cell. Studies indicated that it may modulate functions of various cancer cell types, and can even inhibit metastasis formation in experimental models. In melanoma, zinc was shown to affect melanin production and to induce apoptosis. Using human melanoma cell lines, we have tested the effects of ZnSO4 on cell proliferation, survival, migration as well as in vivo on experimental liver colony formation. We have found that ZnSO4 has antiproliferative and proapoptotic effects in vitro. In SCID mice intraperitoneal administration of ZnSO4 specifically inhibited liver colony formation without affecting primary tumor growth. To reveal the molecular mechanisms of action of zinc in human melanoma, we have tested mRNA expression of zinc finger transcription factors and found a strong inhibitory effect on HIF1α, as compared to WT1 whereas HIF2α and MTF1 expression was unaffected. Immunohistochemical detection of HIF1α protein in liver metastases confirmed its decreased nuclear expression after in vivo ZnSO4 treatment. These data indicate that in human melanoma zinc administration may have an antimetastatic effect due to a selective downregulation of HIF1α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Phys Rev 73:79–118

    CAS  Google Scholar 

  2. Grattan BJ, Freake HC (2012) Zinc and cancer: implications for LIV-1 in breast cancer. Nutrients 4:648–675

    Article  CAS  Google Scholar 

  3. Intsuka S, Araki S (1978) Plasma copper and zinc levels in patients with malignant tumors of digestive organs: clinical evaluation of the cu/Zn ratio. Cancer 42:626–631

    Article  Google Scholar 

  4. Hisaki T, Furumoto T, Nozaka K, Koga S (1988) Serum zinc and copper changes after gastrectomy in aged patients with gastric cancer. Jpn J Sur 18:158–163

    Article  CAS  Google Scholar 

  5. Prasad AS, Beck FW, Doerr TD, Shamsa FH, Mathog RH (1998) Nutritional and zinc status of head and neck cancer patients: an interpretive review. Am Coll Nutr 17:409–418

    Article  CAS  Google Scholar 

  6. Yucel I, Arpaci F, Ozet A, Berk O (1994) Serum copper and zinc levels and copper/zinc ratio in patients with breast cancer. Biol Trace Elem Res 40:31–38

    Article  CAS  Google Scholar 

  7. Igic PG, Lee E, Harper W, Roach KW (2012) Toxic effects associated with consumption of zinc. Mayo Clin Proc 77:713–716

    Article  Google Scholar 

  8. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227

    Article  CAS  Google Scholar 

  9. Timar J, Raso R, Paku S, Kopper L (1998) Oral administration of a trace element preparation and zinc inhibit liver metastasis of 3LL-HH murine tumor cells. Int J Mol Med 2:105–113

    CAS  PubMed  Google Scholar 

  10. Dubi N, Gheber L, Fisgman D, Sekler I, Hershfinkel M (2008) Extracellular zinc and zinc-citrate, acting through a putative zinc-sensing receptor, regulate growth and survival of prostate cancer cells. Carcinogenesis 29:1692–1702

    Article  CAS  Google Scholar 

  11. Hwang JJ, Kim HN, Kim J, Cho DH, Kim MJ, Kim YS, Kim Y, Park SJ, Koh JY (2010) Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. Biometals 23(6):997–1013

    Article  CAS  Google Scholar 

  12. Yamada H, Suzuki K, Koizumi S (2007) Gene expression profile in human cells exposed to zinc. J Toxicol Sci 32:193–196

    Article  CAS  Google Scholar 

  13. Kindermann B, Döring F, Pfaffl M, Daniel H (2004) Identification of genes responsive to intracellular zinc depletion in the human colon adenocarcinoma cell line HT-29. J Nutr 134:57–62

    Article  CAS  Google Scholar 

  14. Schadendorf D, vanAkkoi ACJ, Berking C, Griewank KG, Gutzmer R, Hauschild A et al (2018) Melanoma. Lancet 392:971–984

    Article  Google Scholar 

  15. Farmer PJ, Gidanian S, Shahandeh B, Di Bilio AJ, Tohidian N, Meyskens FL Jr. (2003) Melanin as a target for melanoma chemotherapy: pro-oxidant effect of oxygen and metals on melanoma viability. Pigment Cell Res 16:273–279

    Article  CAS  Google Scholar 

  16. Ladányi A, Tímár J, Paku S, Molnár G, Lapis K (1990) Selection and characterization of human melanoma lines with different liver-colonizing capacity. Int J Cancer 46:456–461

    Article  Google Scholar 

  17. Timár J, Rásó E, Honn KV, Hagmann W (1999) 12-lipoxygenase expression in human melanoma cell lines. Adv Exp Med Biol 469:617–622

    Article  Google Scholar 

  18. Garay, T., E. Juhasz, E. Molnar, M. Eisenbauer, A. Czirok, B. Dekan,et al. (2013) Cell migration or cytokinesis and proliferation? - revisiting the "go or grow" hypothesis in cancer cells in vitro. Exp Cell Res 319:3094–3103

    Article  CAS  Google Scholar 

  19. Wellinghausen N, Kirchner H, Rink L (1997) The immunobiology of zinc. Immunol Today 18:523–524

    Article  Google Scholar 

  20. Franklin RB, Costello LC (2009) The important role of the apoptotic effects of zinc in the development of cancers. J Cell Biochem 106:750–757

    Article  CAS  Google Scholar 

  21. Kim I, Kim CH, Seo GH, Kim HS, Lee J, Kim DG, Ahn YS (2008) Inhibitory effect of zinc on hypoxic HIF-1 activation in astrocytes. Neuroreport 19:1065–1068

    Google Scholar 

  22. Nardinocchi L, Pantisano V, Puca R, Porru M, Aiello A, Grasselli A, Leonetti C, Safran M, Rechavi G, Givol D, Farsetti A, D'Orazi G (2010) Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo. PLoS One 5:e15048

    Article  CAS  Google Scholar 

  23. Yuan Y, Hillind G, Ferguson T, Millhorn DE (2003) Cobalt inhibits the interaction between hypoxia inducible factor-a and von Hippel Lindau protein by direct binding to hypoxia inducible factor-a. J Biol Chem 278:15911–15916

    Article  CAS  Google Scholar 

  24. Chun YS, Choi E, Yeo EJ, Lee HJ, Kim MS, Park JW (2001) A new HIF1 alpha variant induced by zinc ion suppresses HIF1-mediated hypoxic responses. J Cell Sci 114:4051–4061

    CAS  PubMed  Google Scholar 

  25. Nardinocchi L, Puca R, Sacchi A, Rechavi G, Givol D, D’Orazi G (2009) Targeting hypoxia in cancer cells by restoring homeodomain interacting protein-kinase 2 and p53 activity and suppressing HIF1-alpha. PlosOne 4:e6819

    Article  Google Scholar 

  26. Kuphal S, Winklmeier A, Warnecke C, Bosserhoff AK (2010) Constitutive HIF-1 activity in malignant melanoma. Eur J Cancer 46:1159–1169

    Article  CAS  Google Scholar 

  27. Zbytek B, Peacock DL, Seagroves TN, Slominski A (2013) Putative role of HIF transcriptional activity in melanocytes and melanoma biology. Dermatoendocrinol 5:239–251

    Article  Google Scholar 

  28. Valencak J, Kittler H, Schmid K, Schreiber M, Raderer M, Gonzalez-Inchaurraga M, Birner P, Pehamberger H (2009) Prognostic relevance of hypoxia inducible factor-1alpha expression in patients with melanoma. Clin Exp Dermatol 34:e962–e964

    Article  CAS  Google Scholar 

  29. Hanna SC, Krishnan B, Bailey ST, Moschos SJ, Kuan PF, Shimamura T, Osborne LD, Siegel MB, Duncan LM, O’Brien ET III, Superfine R, Miller CR, Simon MC, Wong KK, Kim WY (2013) HIF1α and HIF2α independently activate SRC to promote melanoma metastases. J Clin Invest 123:2078–2093

    Article  CAS  Google Scholar 

  30. Tátrai E, Bartal A, Gacs A, Paku S, Kenessey I, Garay T, Hegedűs B, Molnár E, Cserepes MT, Hegedűs Z, Kucsma N, Szakács G, Tóvári J (2017) Cell-type dependent HIF1α-mediated effects of hypoxia on proliferation, migration and metastatic potential of human tumor cells. Oncotarget 8:44498–44510

    Article  Google Scholar 

  31. Yeo EJ, Chun YS, Cho YS, Kim J, Lee JC, Kim MS, Park JW (2003) YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 95:516–525

    Article  CAS  Google Scholar 

  32. Scheuermann TH, Li Q, Ma HW, Key J, Zhang L, Chen R, Garcia JA, Naidoo J, Longgood J, Frantz DE, Tambar UK, Gardner KH, Bruick RK (2013) Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat Chem Biol 9:271–276

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NKFIH-NAP-2017-1.2.1.-NKP-0002, KTIA-2017-SE, NKFIH-112371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Tímár.

Ethics declarations

Conflict of Interest

The authors of this manuscript declare no conflict of interest concerning of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burián, Z., Ladányi, A., Barbai, T. et al. Selective Inhibition of HIF1α Expression by ZnSO4 Has Antitumoral Effects in Human Melanoma. Pathol. Oncol. Res. 26, 673–679 (2020). https://doi.org/10.1007/s12253-018-00573-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-018-00573-1

Keywords

Navigation