Skip to main content
Log in

Local Influence of Cell Viability on Stretch-Induced Permeability of Alveolar Epithelial Cell Monolayers

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Ventilator induced lung injury, often attributed to over-distension of the alveolar epithelial cell layer, can trigger loss of barrier function. Alveolar epithelial cell monolayers can be used as an idealized in vitro model of the pulmonary epithelium, with cell death and tight junction disruption and permeability employed to estimate stretch-induced changes in barrier function. We adapted a method published for vascular endothelial permeability, compare its sensitivity with our previously published method, and determine the relationship between breeches in barrier properties after stretch and regions of cell death. After 4–5 days in culture, primary rat alveolar epithelial cells seeded on plasma-treated polydimethylsiloxane membrane coated with biotin-labeled fibronectin or fibronectin alone were stretched in the presence of FITC-tagged streptavidin (biotin-labeled membrane) or BODIPY-ouabain. We found that the FITC-labeling method was a more sensitive indicator of permeability disruption, with significantly larger positively stained areas visible in the presence of stretch and with ATP production inhibitor Antimycin-A. Triple-stained images with Hoescht (nuclei), Ethidium Homodimer (EthD, damaged cell nuclei) and FITC (permeable regions) were used to determine that intact cells were positioned closer to damaged cells in permeable regions than in non-permeable regions. We concluded that local cell death may be an important contributor to barrier integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Aschauer, L., L. N. Gruber, W. Pfaller, A. Limonciel, T. J. Athersuch, R. Cavill, A. Khan, G. Gstraunthaler, J. Grillari, R. Grillari, P. Hewitt, M. O. Leonard, A. Wilmes, and P. Jennings. Delineation of the key aspects in the regulation of epithelial monolayer formation. Mol. Cell. Biol. 33(13):2535–2550, 2013.

    Article  Google Scholar 

  2. Borok, Z., S. I. Danto, S. M. Zabski, and E. D. Crandall. Defined medium for primary culture de novo of adult rat alveolar epithelial cells. In Vitro Cell. Dev. Biol. Anim. 30A(2):99–104, 1994.

    Article  Google Scholar 

  3. Brunzel, N. Fundamentals of Urine and Body Fluid Analysis. Philadelphia: Saunders, 2004.

    Google Scholar 

  4. Canfield, P. E., A. M. Geerdes, and B. A. Molitoris. Effect of reversible ATP depletion on tight-junction integrity in LLC-PK1 cells. Am. J Physiol. 261(6 Pt 2):F1038–F1045, 1991.

    Google Scholar 

  5. Cavanaugh, K. J., T. S. Cohen, and S. S. Margulies. Stretch increases alveolar epithelial permeability to uncharged micromolecules. Am. J. Physiol. Cell Physiol. 290(4):C1179–C1188, 2006.

    Article  Google Scholar 

  6. Cavanaugh, Jr, K. J., and S. S. Margulies. Measurement of stretch-induced loss of alveolar epithelial barrier integrity with a novel in vitro method. Am. J. Physiol. Cell Physiol. 283(6):C1801–C1808, 2002.

    Article  Google Scholar 

  7. Cavanaugh, Jr, K. J., J. Oswari, and S. S. Margulies. Role of stretch on tight junction structure in alveolar epithelial cells. Am. J. Res. Cell Mol. Biol. 25(5):584–591, 2001.

    Article  Google Scholar 

  8. Chen, W., R. Sharma, A. N. Rizzo, J. H. Siegler, J. G. Garcia, and J. R. Jacobson. Role of claudin-5 in the attenuation of murine acute lung injury by simvastatin. Am. J. Res. Cell Mol. Biol. 50(2):328–336, 2014.

    Google Scholar 

  9. Cohen, T. S., K. J. Cavanaugh, and S. S. Margulies. Frequency and peak stretch magnitude affect alveolar epithelial permeability. Eur. Respir. J. 32(4):854–861, 2008.

    Article  Google Scholar 

  10. Cohen, T. S., B. C. DiPaolo, G. G. Lawrence, and S. S. Margulies. Sepsis enhances epithelial permeability with stretch in an actin dependent manner. PloS One 7(6):e38748, 2012.

    Article  Google Scholar 

  11. Cohen, T. S., G. Gray Lawrence, and S. S. Margulies. Cultured alveolar epithelial cells from septic rats mimic in vivo septic lung. PloS One 5(6):e11322, 2010.

    Article  Google Scholar 

  12. Danto, S. I., S. M. Zabski, and E. D. Crandall. Reactivity of alveolar epithelial cells in primary culture with type I cell monoclonal antibodies. Am. J. Res. Cell Mol. Biol. 6(3):296–306, 1992.

    Article  Google Scholar 

  13. Davidovich, N., B. C. DiPaolo, G. G. Lawrence, P. Chhour, N. Yehya, and S. S. Margulies. Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability. Am. J. Res. Cell Mol. Biol. 49(1):156–164, 2013.

    Article  Google Scholar 

  14. Dipaolo, B. C., N. Davidovich, M. G. Kazanietz, and S. S. Margulies. Rac1 pathway mediates stretch response in pulmonary alveolar epithelial cells. Am. J. Physiol. Lung Cell Mol Physiol. 305(2):L141–L153, 2013.

    Article  Google Scholar 

  15. DiPaolo, B. C., and S. S. Margulies. Rho kinase signaling pathways during stretch in primary alveolar epithelia. Am. J. Physiol. Lung Cell Mol. Physiol. 302(10):L992–L1002, 2012.

    Article  Google Scholar 

  16. Dos Santos, C. C., and A. S. Slutsky. Invited review: mechanisms of ventilator-induced lung injury: a perspective. J. Appl. Physiol. (1985) 89(4):1645–1655, 2000.

    Google Scholar 

  17. Dubrovskyi, O., A. A. Birukova, and K. G. Birukov. Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury. Lab. Invest 93(2):254–263, 2013.

    Article  Google Scholar 

  18. Fang, X., A. P. Neyrinck, M. A. Matthay, and J. W. Lee. Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J. Biol. Chem. 285(34):26211–26222, 2010.

    Article  Google Scholar 

  19. Fisher, J. L., and S. S. Margulies. Na(+)-K(+)-ATPase activity in alveolar epithelial cells increases with cyclic stretch. Am. J. Physiol. Lung Cell. Mol. Physiol. 283(4):L737–L746, 2002.

    Article  Google Scholar 

  20. Imanaka, H., M. Shimaoka, N. Matsuura, M. Nishimura, N. Ohta, and H. Kiyono. Ventilator-induced lung injury is associated with neutrophil infiltration, macrophage activation, and TGF-beta 1 mRNA upregulation in rat lungs. Anesth. Anal. 92(2):428–436, 2001.

    Article  Google Scholar 

  21. Jacob, A. M., and D. P. Gaver, 3rd. Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4. J. Appl. Physiol. (1985) 113(9):1377–1387, 2012.

    Article  Google Scholar 

  22. Jokinen, V., P. Suvanto, and S. Franssila. Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics 6(1):16501–1650110, 2012.

    Article  Google Scholar 

  23. Krysko, D. V., L. Leybaert, P. Vandenabeele, and K. D’Herde. Gap junctions and the propagation of cell survival and cell death signals. Apoptosis 10(3):459–469, 2005.

    Article  Google Scholar 

  24. Lieberthal, W., and J. S. Levine. Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am. J. Physiol. 271(3 Pt 2):F477–F488, 1996.

    Google Scholar 

  25. Mitchell, L. A., C. E. Overgaard, C. Ward, S. S. Margulies, and M. Koval. Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function. Am. J. Physiol. Lung Cell. Mol. Physiol. 301(1):L40–L49, 2011.

    Article  Google Scholar 

  26. Nikolaev, N. I., T. Muller, D. J. Williams, and Y. Liu. Changes in the stiffness of human mesenchymal stem cells with the progress of cell death as measured by atomic force microscopy. J. Biomech. 47(3):625–630, 2014.

    Article  Google Scholar 

  27. Oshima, T., K. Gedda, J. Koseki, X. Chen, J. Husmark, J. Watari, H. Miwa, and S. Pierrou. Establishment of esophageal-like non-keratinized stratified epithelium using normal human bronchial epithelial cells. Am. J. Physiol. Cell Physiol. 300(6):C1422–C1429, 2011.

    Article  Google Scholar 

  28. Rosenblatt, J., M. C. Raff, and L. P. Cramer. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr. Biol. 11(23):1847–1857, 2001.

    Article  Google Scholar 

  29. Strengert, M., and U. G. Knaus. Analysis of epithelial barrier integrity in polarized lung epithelial cells. Methods Mol. Biol. 763:195–206, 2011.

    Article  Google Scholar 

  30. Suki, B., and R. Hubmayr. Epithelial and endothelial damage induced by mechanical ventilation modes. Curr. Opin. Crit. Care 20(1):17–24, 2014.

    Article  Google Scholar 

  31. Tan, S. H., N. T. Nguyen, Y. C. Chua, and T. G. Kang. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4(3):32204, 2010.

    Article  Google Scholar 

  32. Tremblay, L. N., and A. S. Slutsky. Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med. 32(1):24–33, 2006.

    Article  Google Scholar 

  33. Tschumperlin, D. J., and S. S. Margulies. Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. Am. J. Physiol. 275(6 Pt 1):L1173–L1183, 1998.

    Google Scholar 

  34. Tschumperlin, D. J., J. Oswari, and A. S. Margulies. Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am. J. Respir. Crit. Care Med. 162(2 Pt 1):357–362, 2000.

    Article  Google Scholar 

  35. Wang, L., B. Sun, K. S. Ziemer, G. A. Barabino, and R. L. Carrier. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells. J. Biomed. Mater. Res. Part A 93(4):1260–1271, 2010.

    Google Scholar 

  36. Yehya, N., A. Yerrapureddy, J. Tobias, and S. S. Margulies. MicroRNA modulate alveolar epithelial response to cyclic stretch. BMC Genomics 13:154, 2012.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH R01-HL57204 and the Stephenson Fund of the University of Pennsylvania.

Conflict of interest

The authors (Song, Davis, Lawrence, and Margulies) have no conflicts of interest to disclose.

Ethical Standards

No human studies were conducted for this research. The animal was protocol approved by the University of Pennsylvania Institutional Animal Care and Use Committee (IACUC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Margulies.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Distribution of FITC-streptavidin–biotin on cell-free PDMS membranes with and without O2-plasma treatment. Representative images 5 min after 25ug/ml of FITC-streptavidin was added to biotin (40 nM) labeled fibronectin coated PDMS membranes. Bars = 100 µm. Supplementary material 1 (TIFF 3594 kb)

12195_2015_405_MOESM2_ESM.tif

Percent of image field above unstretched monolayers. All values provided as mean ± SEM. Supplementary material 2 (TIFF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M.J., Davis, C.I., Lawrence, G.G. et al. Local Influence of Cell Viability on Stretch-Induced Permeability of Alveolar Epithelial Cell Monolayers. Cel. Mol. Bioeng. 9, 65–72 (2016). https://doi.org/10.1007/s12195-015-0405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-015-0405-8

Keywords

Navigation