Skip to main content

Advertisement

Log in

Upper Extremity Compressive Neuropathies in the Pediatric and Adolescent Populations

  • Compressive Neuropathies in the Upper Extremity (E Shin, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Although somewhat rare, upper extremity compressive neuropathies can occur in the pediatric and adolescent populations due to various etiologies. Some of the most common conditions seen include thoracic outlet syndrome, supracondylar process syndrome, cubital tunnel syndrome with subluxation of the ulnar nerve, and carpal tunnel syndrome. This review will focus on these diagnoses and how to address them in the pediatric and adolescent populations.

Recent Findings

Due to the rarity of upper extremity compressive neuropathies in the pediatric and adolescent populations, substantial advancement in the literature does not routinely occur. However, recent literature has found a difference in the rate of various subtypes of thoracic outlet syndrome in children versus adults. Additionally, cubital tunnel syndrome associated with ulnar nerve subluxation/instability has recently been found to have better outcomes following surgical decompression of the ulnar nerve and transposition than those with stable ulnar nerves.

Summary

In summary, this review provides the most recent knowledge surrounding upper extremity compressive and entrapment neuropathies in the pediatric and adolescent populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roos DB. Overview of thoracic outlet syndromes. In: Machleder HI, editor. Vascular disorders of the upper extremity. Mount Kisco, NY: Futura; 1989. p. 155–77.

    Google Scholar 

  2. •• Matos JM, Gonzalez L, Kfoury E, Echeverria A, Bechara CF, Lin PH. Outcomes following operative management of thoracic outlet syndrome in pediatric patients. Vascular. 2018;26(4):410–7. https://doi.org/10.1177/1708538117747628One of the largest and most comprehensive studies investigating the presentation, intervention, and outcomes of all three subtypes of thoracic outlet syndrome in the pediatric and adolescent population.

    Article  PubMed  Google Scholar 

  3. •• Ransom EF, Minton HL, Young BL, He JK, Ponce BA, McGwin G, Meyer RD, Brabston EW 3rd. Intermediate and long-term outcomes following surgical decompression of neurogenic thoracic outlet syndrome in an adolescent patient population. Hand (N.Y.). 2020 [Epub ahead of print]. https://doi.org/10.1177/1558944719901. Outcomes following surgical intervention for neurogenic thoracic outlet syndrome in a large pediatric and adolescent cohort, both short and long term, were noted to be favorable in relieving symptoms. No statistical difference was found in quantitative measures between pre- and post-operative VAS and SANE scores.

  4. Rehemutula A, Zhang L, Chen L, Chen D, Gu Y. Managing pediatric thoracic outlet syndrome. Ital J Pediatr. 2015;41:22. https://doi.org/10.1186/s13052-015-0128-4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. • Al Shakarchi J, Jaipersad A, Morgan R, Pherwani A. Early and late outcomes of surgery for neurogenic thoracic outlet syndrome in adolescents. Ann Vasc Surg. 2020;63:332–5. https://doi.org/10.1016/j.avsg.2019.07.026Long-term follow-up study showing that neurogenic thoracic outlet syndrome can have a recurrence years after operative intervention in the pediatric and adolescent populations.

    Article  PubMed  Google Scholar 

  6. Hong J, Pisapia JM, Ali ZS, Heuer AJ, Alexander E, Heuer GG, et al. Long-term outcomes after surgical treatment of pediatric neurogenic thoracic outlet syndrome. J Neurosurg Pediatr. 2018;21(1):54–64. https://doi.org/10.3171/2017.7.PEDS17257.

    Article  PubMed  Google Scholar 

  7. Trenor CC 3rd, Fisher JG, Fa K, Sparks EA, Duzan J, Harney K, et al. Paget-Schroetter syndrome in 21 children: outcomes after multidisciplinary care. J Pediatr. 2015;166(6):1493–7.e1. https://doi.org/10.1016/j.jpeds.2015.03.030.

    Article  PubMed  Google Scholar 

  8. Arthur LG, Teich S, Hogan M, Caniano DA, Smead W. Pediatric thoracic outlet syndrome: a disorder with serious vascular complications. J Pediatr Surg. 2008;43(6):1089–94. https://doi.org/10.1016/j.jpedsurg.2008.02.038.

    Article  PubMed  Google Scholar 

  9. Funakoshi T, Furushima K, Kusano H, Itoh Y, Miyamoto A, Sugawara M, et al. First-rib stress fracture in overhead throwing athletes. J Bone Joint Surg Am. 2019;101(10):896–903. https://doi.org/10.2106/JBJS.18.01375.

    Article  PubMed  Google Scholar 

  10. Camerlinck M, Vanhoenacker FM, Kiekens G. Ultrasound demonstration of Struthers’ ligament. J Clin Ultrasound. 2010;38(9):499–502. https://doi.org/10.1002/jcu.20700.

    Article  PubMed  Google Scholar 

  11. Pedret C, Balius R, Alomar X, Vilaró J, Ruiz-Cotorro A, Minoves M. Stress fracture of the supracondylar process of the humerus in a professional tennis player. Clin J Sport Med. 2015;25(1):e20–2. https://doi.org/10.1097/JSM.0000000000000101.

    Article  PubMed  Google Scholar 

  12. Thompson JK, Edwards JD. Supracondylar process of the humerus causing brachial artery compression and digital embolization in a fast-pitch softball player. A case report. Vasc Endovasc Surg. 2005;39(5):445–8. https://doi.org/10.1177/153857440503900510.

    Article  Google Scholar 

  13. Opanova MI, Atkinson RE. Supracondylar process syndrome: case report and literature review. J Hand Surg Am. 2014;39(6):1130–5. https://doi.org/10.1016/j.jhsa.2014.03.035.

    Article  PubMed  Google Scholar 

  14. Bain G, Gupta P, Phadnis J, Singhi PK. Endoscopic excision of supracondylar humeral spur for decompression of the median nerve and brachial artery. Arthrosc Tech. 2016;5(1):e67–70. https://doi.org/10.1016/j.eats.2015.08.019.

    Article  PubMed  PubMed Central  Google Scholar 

  15. •• Shon HC, Park JK, Kim DS, Kang SW, Kim KJ, Hong SH. Supracondylar process syndrome: two cases of median nerve neuropathy due to compression by the ligament of Struthers. J Pain Res. 2018;11:803–7. https://doi.org/10.2147/JPR.S160861A case series of two presentations of supracondylar process syndrome involving the median nerve that were both treated to symptom resolution with excision of the supracondylar process and the ligament of Struthers.

    Article  PubMed  PubMed Central  Google Scholar 

  16. •• May-Miller P, Robinson S, Sharma P, Shahane S. The supracondylar process: a rare case of ulnar nerve entrapment and literature review. J Hand Microsurg. 2019;11(Suppl S1):S06–10. https://doi.org/10.1055/s-0038-1642067A description of the presentation and treatment of supracondylar process syndrome associated with ulnar nerve symptoms via excision of a supracondylar process, with resultant return to normal function post-operatively.

    Article  PubMed  Google Scholar 

  17. Tzaveas AP, Dimitriadis AG, Antoniou KI, Pazis IG, Paraskevas GK, Vrettakos AN. Supracondylar process of the humerus: a rare case with compression of the ulnar nerve. J Plast Surg Hand Surg. 2010;44(6):325–6. https://doi.org/10.3109/02844310903123320.

    Article  PubMed  Google Scholar 

  18. Boero S, Sénès FM, Catena N. Pediatric cubital tunnel syndrome by anconeus epitrochlearis: a case report. J Shoulder Elb Surg. 2009;18(2):e21–3. https://doi.org/10.1016/j.jse.2008.06.001.

    Article  Google Scholar 

  19. Nishimura M, Itsubo T, Horii E, Hayashi M, Uchiyama S, Kato H. Tardy ulnar nerve palsy caused by chronic radial head dislocation after Monteggia fracture: a report of two cases. J Pediatr Orthop B. 2016;25(5):450–3. https://doi.org/10.1097/BPB.0000000000000302.

    Article  PubMed  Google Scholar 

  20. Stutz CM, Calfee RP, Steffen JA, Goldfarb CA. Surgical and nonsurgical treatment of cubital tunnel syndrome in pediatric and adolescent patients. J Hand Surg Am. 2012;37(4):657–62. https://doi.org/10.1016/j.jhsa.2012.01.016.

    Article  PubMed  Google Scholar 

  21. •• Quinn DP, Gu A, Greenberg JA, Fischer TJ, Merrell GA. Surgical treatment of cubital tunnel in pediatric athletes. J Hand Microsurg. 2018;10(2):82–5. https://doi.org/10.1055/s-0038-1626685A study demonstrating that pediatric athletes with cubital tunnel syndrome can have normal electrodiagnostic studies yet benefit from surgical intervention when conservative management fails to relieve symptoms.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Henn CM, Patel A, Wall LB, Goldfarb CA. Outcomes following cubital tunnel surgery in young patients: the importance of nerve mobility. J Hand Surg Am. 2016;41(4):e1–7. https://doi.org/10.1016/j.jhsa.2016.01.014This study demonstrated that patients with ulnar nerve subluxation or an unstable ulnar nerve have less residual symptoms following operative intervention compared with patients that present with a stable ulnar nerve.

    Article  PubMed  Google Scholar 

  23. Djordjevic N, Micic I, Pawaskar A, Jeon IH. Intra-articular entrapment of the ulnar nerve after acute elbow dislocation: a rare cause of flexion contracture. J Orthop Sci. 2015;20(2):418–21. https://doi.org/10.1007/s00776-013-0459-1.

    Article  PubMed  Google Scholar 

  24. Padua L, Coraci D, Erra C, Pazzaglia C, Paolasso I, Loreti C, et al. Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol. 2016;15(12):1273–84. https://doi.org/10.1016/S1474-4422(16)30231-9.

    Article  PubMed  Google Scholar 

  25. Davis L, Vedanarayanan VV. Carpal tunnel syndrome in children. Pediatr Neurol. 2014;50(1):57–9. https://doi.org/10.1016/j.pediatrneurol.2013.08.019.

    Article  PubMed  Google Scholar 

  26. Potulska-Chromik A, Lipowska M, Gawel M, Ryniewicz B, Maj E, Kostera-Pruszczyk A. Carpal tunnel syndrome in children. J Child Neurol. 2014;29(2):227–31. https://doi.org/10.1177/0883073813504458.

    Article  PubMed  Google Scholar 

  27. Chammas M, Boretto J, Burmann LM, Ramos RM, Dos Santos Neto FC, Silva JB. Carpal tunnel syndrome – part I (anatomy, physiology, etiology and diagnosis). Rev Bras Ortop. 2014;49(5):429–36. https://doi.org/10.1016/j.rboe.2014.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  28. •• Mah JK, van Alfen N. Neuromuscular ultrasound: clinical applications and diagnostic values. Can J Neurol Sci. 2018;45(6):605–19. https://doi.org/10.1017/cjn.2018.314This study represented a systematic review of the sensitivity, specificity, and positive predictive value of using ultrasound to detect neuromuscular changes in carpal tunnel syndrome as a non-invasive and accurate diagnostic tool.

    Article  PubMed  Google Scholar 

  29. Batdorf NJ, Cantwell SR, Moran SL. Idiopathic carpal tunnel syndrome in children and adolescents. J Hand Surg Am. 2015;40(4):773–7. https://doi.org/10.1016/j.jhsa.2015.01.026.

    Article  PubMed  Google Scholar 

  30. Kobayashi H. Recent trends in mucopolysaccharidosis research. J Hum Genet. 2019;64(2):127–37. https://doi.org/10.1038/s10038-018-0534-8.

    Article  CAS  PubMed  Google Scholar 

  31. Galimerti C, Madeo A, Di Rocco M, Fiumara A. Mucopolysaccharidoses: early diagnostic signs in infants and children. Ital J Pediatr. 2018;44(Suppl 2):133. https://doi.org/10.1186/s13052-018-0550-5.

    Article  Google Scholar 

  32. Bäumer T, Bühring N, Schelle T, Münchau A, Muschol N. Nerve ultrasound in clinical management of carpal tunnel syndrome in mucopolysaccharidoses. Dev Med Child Neurol. 2016;58(11):1172–9. https://doi.org/10.1111/dmcn.13127.

    Article  PubMed  Google Scholar 

  33. •• Patel P, Antoniou G, Clark D, Ketteridge D, Williams N. Screening for carpal tunnel syndrome in patients with mucopolysaccharidoses. J Child Neurol. 2020;35(6):410–7. https://doi.org/10.1177/0883073820904481A systematic review of carpal tunnel syndrome due to mucopolysaccharidosis cases detailing the range of recommended commencement, timing, and frequency of screening for carpal tunnel syndrome.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bocsa C, Asavoaie C, Bucerzan S, Nascu I, Brumboiu I, Al-Khzouz C. Ultrasonographic evaluation of the median nerve at the level of the carpal tunnel outlet and mid forearm in patients with type II mucopolysaccharidosis. Med Ultrason. 2016;18(1):36–41. https://doi.org/10.11152/mu.2013.2066.181.cob.

    Article  PubMed  Google Scholar 

  35. Agarwal S, Haase SC. Lipofibromatous hamartoma of the median nerve. J Hand Surg Am. 2013;38(2):392–7. https://doi.org/10.1016/j.jhsa.2012.10.042.

    Article  PubMed  Google Scholar 

  36. Kini JR, Kini H, Rau A, Kamath J, Kini A. Lipofibromatous hamartoma of the median nerve in association with or without macrodactyly. Turk Patoloji Derg. 2018;34(1):87–91. https://doi.org/10.5146/tjpath.2014.01282.

    Article  PubMed  Google Scholar 

  37. Kitridis D, Dionellis P, Xarchas K, Givissi P. Giant median nerve due to hamartoma causing severe carpal tunnel syndrome. J Orthop Case Rep. 2018;8(4):57–60. https://doi.org/10.13107/jocr.2250-0685.1160.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mohammed Saeed MA, Dawood AA, Mahmood HM. Lipofibromatous hamartoma of the median nerve with macrodactyly of middle finger. J Clin Orthop Trauma. 2019;10(6):1077–81. https://doi.org/10.1016/j.jcot.2019.05.023.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sirinoglu H, Sönmez A, Sav A, Numanoglu A. Lipofibromatous hamartoma of the median nerve. Ann Plast Surg. 2010;65(2):174–6. https://doi.org/10.1097/SAP.0b013e3181c9c41b.

    Article  CAS  PubMed  Google Scholar 

  40. Son ES, Kim DH. Morphological changes of the median nerve after carpal tunnel release in a median nerve lipofibromatous hamartoma. Am J Phys Med Rehabil. 2019;98(3):e24–6. https://doi.org/10.1097/PHM.0000000000001004.

    Article  PubMed  Google Scholar 

  41. Maincent K, Héron B, Billette de Villemeur T, Mayer M. Early detection of median nerve compression by electroneurography can improve outcome in children with mucopolysaccharidoses. Orphanet J Rare Dis. 2018;13(1):209. https://doi.org/10.1186/s/13023-018-0937-9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Argenta AE, Davit A. Carpal tunnel syndrome in the setting of mucopolysaccharidosis II (Hunter syndrome). Plast Reconstr Surg Glob Open. 2017;5(8):e1477. https://doi.org/10.1097/GOX.0000000000001477.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dua K, Lancaster TP, Abzug JM. Age-dependent reliability of Semmes-Weinstein and 2-point discrimination tests in children. J Pediatr Orthop. 2019;39(2):98–103. https://doi.org/10.1097/BPO.0000000000000892.

    Article  PubMed  Google Scholar 

  44. Cartwright MS, Hobson-Webb LD, Boon AJ, Alter KE, Hunt CH, Flores VH, et al. Evidence-based guideline: neuromuscular ultrasound for the diagnosis of carpal tunnel syndrome. Muscle Nerve. 2012;46(2):287–93. https://doi.org/10.1002/mus.23389.

    Article  PubMed  Google Scholar 

  45. Williams N, Challoumas D, Eastwood DM. Does orthopaedic surgery improve quality of life and function in patients with mucopolysaccharidoses? J Child Orthop. 2017;11(4):289–97. https://doi.org/10.1302/1863-2548.11.170042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morishita K, Petty RE. Musculoskeletal manifestations of mucopolysaccharidoses. Rheumatology (Oxford). 2011;50(Suppl 5):v19–25. https://doi.org/10.1093/rheumatology/ker397.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

Casey M. Codd and Joshua M. Abzug declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Compressive Neuropathies in the Upper Extremity

Electronic Supplementary Material

Video 1

Ulnar nerve subluxation. Note that elbow flexion causes the nerve to subluxate anterior to the medial epicondyle, while elbow extension causes the nerve to reduce into its normal anatomic position, posterior to the medial epicondyle. (Courtesy of Joshua M. Abzug, MD) (MOV 1243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Codd, C.M., Abzug, J.M. Upper Extremity Compressive Neuropathies in the Pediatric and Adolescent Populations. Curr Rev Musculoskelet Med 13, 696–707 (2020). https://doi.org/10.1007/s12178-020-09666-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-020-09666-4

Keywords

Navigation