Skip to main content
Log in

Nuclear neuroimaging in acute and subacute ischemic stroke

  • Review Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Neuroimaging in ischemic stroke continues to be one of the most developing fields in nuclear medicine. Many studies have established the efficacy of blood flow and metabolism measurements in acute ischemic stroke. Although the release of recombinant tissue plasminogen activator in clinical practice has minimized the use of SPECT or PET in the first few hours of ischemic stroke onset, implementing these techniques into a set of initial examinations is still beneficial to exclude risky patients for reperfusion therapy beyond several hours after onset. Rescuing of viable tissue suffering ischemic penumbra is an important target of early therapeutic strategy. Ischemic penumbra can be visualized by means of perfusion imaging, central type benzodiazepine receptor imaging, and hypoxy imaging. In the later phase of subacute ischemic stroke, inflammation and apoptosis can be visualized by means of peripheral-type benzodiazepine receptor imaging and annexin V imaging, respectively. Imaging of the penumbra and cellular responses will help evaluate the effects of drugs and interventions for ischemic stroke, suggesting its potential as a marker of the efficacy of future therapeutic regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Friedman PJ, Davis G, Allen B. Semi-quantitative SPECT scanning in acute ischaemic stroke. Scand J Rehabil Med. 1993;25:99–105.

    CAS  PubMed  Google Scholar 

  2. Mahagne MH, Darcourt J, Migneco O, Fournier JP, Thiercelin D, Ducoeur S, et al. Early 99mTc-ethylcysteinate dimer brain SPECT patterns in the acute phase of stroke as predictors of neurological recovery. Cerebrovasc Dis. 2000;10:364–73.

    Article  CAS  PubMed  Google Scholar 

  3. Alexandrov AV, Ehrlich LE, Bladin CF, Norris JW. Noninvasive assessment of intracranial perfusion in acute cerebral ischemia. J Neuroimaging. 1995;5:76–82.

    CAS  PubMed  Google Scholar 

  4. Giubilei F, Lenzi GL, Di Pielo V, Pozzilli C, Pantano P, Bastianello S, et al. Predictive value of brain perfusion single-photon emission computed tomography in acute ischemic stroke. Stroke. 1990;21:895–900.

    CAS  PubMed  Google Scholar 

  5. Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European cooperative acute stroke study (ECASS). JAMA. 1995;274:1017–25.

    Article  CAS  PubMed  Google Scholar 

  6. Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (alteplase) for ischemic stroke 3 to 5 hours after symptom onset: the ATLANTIS study: A randomized controlled trial. JAMA. 1999;282:2019–26.

    Article  CAS  PubMed  Google Scholar 

  7. Acute Stroke Imaging Standardization Group-Japan. Procedure guidelines for acute stroke imaging 2007. Tokyo: Nankodo; 2007.

  8. Ito H, Kanno I, Fukuda H. Human cerebral circulation: positron emission tomography studies. Ann Nucl Med. 2005;19:65–74.

    Article  PubMed  Google Scholar 

  9. Okazawa H, Kudo T. Clinical impact of hemodynamic parameter measurement for cerebrovascular disease using positron emission tomography and 15O-labeled tracers. Ann Nucl Med. 2009;23:217–27.

    Article  CAS  PubMed  Google Scholar 

  10. Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P. Reversal of focal “misery-perfusion syndrome” by extra-intra-cranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography. Stroke. 1981;12:454–9.

    CAS  PubMed  Google Scholar 

  11. Powers WJ, Raichle ME. Positron emission tomography and its application to the study of cerebrovascular disease in man. Stroke. 1985;16:361–76.

    CAS  PubMed  Google Scholar 

  12. Mohr JP, Barnett HJM. Classification of ischemic strokes. In: Barnett HJM, Stein BM, Mohr JP, Yatsu FM, editors. Stroke: pathophysiology, diagnosis, and management, vol. 1. New York: Churchill Livingston; 1986. p. 281–91.

    Google Scholar 

  13. Minematsu K, Yamaguchi T, Omae T. ‘Spectacular shrinking deficit’: rapid recovery from a major hemispheric syndrome by migration of an embolus. Neurology. 1992;42:157–62.

    CAS  PubMed  Google Scholar 

  14. Olsen TS, Larsen B, Skriver EB, Herning M, Enevoldsen E, Lassen NA. Focal cerebral hyperemia in acute stroke. Incidence, pathophysiology and clinical significance. Stroke. 1981;12:598–607.

    CAS  PubMed  Google Scholar 

  15. Marchal G, Young AR, Baron JC. Early postischemic hyperperfusion: pathophysiologic insights from positron emission tomography. J Cereb Blood Flow Metab. 1999;19:467–82.

    Article  CAS  PubMed  Google Scholar 

  16. Baird AE, Donnan GA, Austin MC, McKay WJ. Early reperfusion in the ‘spectacular shrinking deficit’ demonstrated by single-photon emission computed tomography. Neurology. 1995;45:1335–9.

    CAS  PubMed  Google Scholar 

  17. Marchal G, Furlan M, Beaudouin V, Rioux P, Hauttement JL, Serrati C, et al. Early spontaneous hyperperfusion after stroke. A marker of favourable tissue outcome? Brain. 1996;119:409–19.

    Article  PubMed  Google Scholar 

  18. Garcia JH, Yoshida Y, Chen H, Li Y, Zhang ZG, Lian J, et al. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol. 1993;142:623–35.

    CAS  PubMed  Google Scholar 

  19. Powers WJ, Grubb RL, Darriet D, Raichle ME. Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab. 1985;5:600–8.

    CAS  PubMed  Google Scholar 

  20. Higano S, Uemura K, Shishido F, Kanno I, Tomura N, Sakamoto K. Evaluation of critically perfused area in acute ischemic stroke for therapeutic reperfusion: a clinical PET study. Ann Nucl Med. 1993;7:167–71.

    Article  CAS  PubMed  Google Scholar 

  21. Astrup J, Siesjö BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke. 1981;12:723–5.

    CAS  PubMed  Google Scholar 

  22. Jones TH, Morawetz RB, Crowell RM, Marcoux FW, FitzGibbon SJ, DeGirolami U, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981;54:773–82.

    Article  CAS  PubMed  Google Scholar 

  23. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008;55:310–8.

    Article  CAS  PubMed  Google Scholar 

  24. Nag S, Manias JL, Stewart DJ. Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol. 2009;118:197–217.

    Article  PubMed  Google Scholar 

  25. Yeh SH, Liu RS, Hu HH, Wong WJ, Lo YK, Lai ZY, et al. Brain SPECT imaging with 99mTc-hexamethylpropyleneamine oxime in the early detection of cerebral infarction: comparison with transmission computed tomography. Nucl Med Commun. 1986;7:873–8.

    Article  CAS  PubMed  Google Scholar 

  26. Hill TC, Holman BL, Lovett R, O’Leary DH, Front D, Magistretti P, et al. Initial experience with SPECT (single-photon computerized tomography) of the brain using N-isopropyl I-123 p-iodoamphetamine: Concise communication. J Nucl Med. 1982;23:191–5.

    CAS  PubMed  Google Scholar 

  27. Launes J, Nikkinen P, Lindroth L, Brownell AL, Liewendahl K, Livanainen M. Brain perfusion defect size in SPECT predicts outcome in cerebral infarction. Nucl Med Commun. 1989;10:891–900.

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe Y, Takagi H, Aoki S, Sassa H. Prediction of cerebral infarct sizes by cerebral blood flow SPECT performed in the early acute stage. Ann Nucl Med. 1999;13:205–10.

    Article  CAS  PubMed  Google Scholar 

  29. Shimosegawa E, Hatazawa J, Inugami A, Fujita H, Ogawa T, Aizawa Y, et al. Cerebral infarction within six hours of onset: prediction of completed infarction with technetium-99m-HMPAO SPECT. J Nucl Med. 1994;35:1097–103.

    CAS  PubMed  Google Scholar 

  30. Ueda T, Hatakeyama T, Kumon Y, Sakaki S, Uraoka T. Evaluation of risk of hemorrhagic transformation in local intra-arterial thrombolysis in acute ischemic stroke by initial SPECT. Stroke. 1994;25:298–303.

    CAS  PubMed  Google Scholar 

  31. Berrouschot J, Barthel H, Hesse S, Köster J, Knapp WH, Schneider D. Differentiation between transient ischemic attack and ischemic stroke within the first six hours after onset of symptoms by using 99mTc-ECD-SPECT. J Cereb Blood Flow Metab. 1998;18:921–9.

    Article  CAS  PubMed  Google Scholar 

  32. Ueda T, Sakaki S, Yuh WTC, Nochide I, Ohta S. Outcome in acute stroke with successful intra-arterial thrombolysis and predictive value of initial single-photon emission-computed tomography. J Cereb Blood Flow Metab. 1999;19:99–108.

    Article  CAS  PubMed  Google Scholar 

  33. Ogasawara K, Ogawa A, Doi M, Konno H, Suzuki M, Yoshimoto T. Prediction of acute embolic stroke outcome after local intraarterial thrombolysis: Value of pretreatment and posttreatment 99mTc-ethyl cysteinate dimer single photon emission computed tomography. J Cereb Blood Flow Metab. 2000;20:1579–86.

    Article  CAS  PubMed  Google Scholar 

  34. Iseda T, Nakano S, Yano T, Suzuki Y, Wakisaka S. Time-threshold curve determined by single photon emission CT in patients with acute middle cerebral artery occlusion. AJNR Am J Neuroradiol. 2002;23:572–6.

    PubMed  Google Scholar 

  35. Hirano T, Yonehara T, Inatomi Y, Hashimoto Y, Uchino M. Presence of early ischemic changes on computed tomography depends on severity and the duration of hypoperfusion. A single photon emission-computed tomographic study. Stroke. 2005;36:2601–8.

    Article  PubMed  Google Scholar 

  36. Gasparotti R, Grassi M, Mardighian D, Frigerio M, Pavia M, Liserre R, et al. Perfusion CT in patients with acute ischemic stroke treated with intra-arterial thrombolysis: predictive value of infarct core size on clinical outcome. AJNR Am J Neuroradiol. 2009;30:722–7.

    Article  CAS  PubMed  Google Scholar 

  37. Lansberg MG, Thijs VN, Bammer R, Olivot JM, Marks MP, Wechsler LR, et al. The MRA-DWI mismatch identifies patients with stroke who are likely to benefit from reperfusion. Stroke. 2008;39:2491–6.

    Article  PubMed  Google Scholar 

  38. Takasawa M, Jones PS, Guadagno JV, Christensen S, Fryer TD, Harding S, et al. How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke. 2008;39:870–7.

    Article  PubMed  Google Scholar 

  39. Ibaraki M, Shimosegawa E, Miura S, Takahashi K, Ito H, Kanno I, et al. PET measurements of CBF, OEF, and CMRO2 without arterial sampling in hyperacute ischemic stroke: method and error analysis. Ann Nucl Med. 2004;18:35–44.

    Article  PubMed  Google Scholar 

  40. Kobayashi M, Okazawa H, Tsuchida T, Kawai K, Fujibayashi Y, Yonekura Y. Diagnosis of misery perfusion using noninvasive 15O gas PET. J Nucl Med. 2006;47:1581–6.

    PubMed  Google Scholar 

  41. Kobayashi M, Kudo T, Tsujikawa T, Isozaki M, Arai Y, Fujibayashi Y, et al. Shorter examination method for the diagnosis of misery perfusion with count-based oxygen extraction fraction elevation in 15O-gas PET. J Nucl Med. 2008;49:242–6.

    Article  PubMed  Google Scholar 

  42. Olsen TS, Larsen B, Herning M, Skriver EB, Lassen NA. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke. Stroke. 1983;14:332–41.

    CAS  PubMed  Google Scholar 

  43. Wise RJ, Bernardi S, Frackowiak RS, Legg NJ, Jones T. Serial observations on the pathophysiology of acute stroke. The transition from ischaemia to infarction as reflected in regional oxygen extraction. Brain. 1983;106:197–222.

    Article  PubMed  Google Scholar 

  44. Heiss WD, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab. 1992;12:193–203.

    CAS  PubMed  Google Scholar 

  45. Hakim AM, Evans AC, Berger L, Kuwabara H, Worsley K, Marchal G, et al. The effect of nimodipine on the evolution of human cerebral infarction studied by PET. J Cereb Blood Flow Metab. 1989;9:523–34.

    CAS  PubMed  Google Scholar 

  46. Heiss WD, Graf R, Wienhard K, Löttgen J, Saito R, Fujita T, et al. Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab. 1994;14:892–902.

    CAS  PubMed  Google Scholar 

  47. Baron JC. Mapping of the ischaemic penumbra with PET: Implications for acute stroke treatment. Cerebrovasc Dis. 1999;9:193–201.

    Article  CAS  PubMed  Google Scholar 

  48. Furlan M, Marchal G, Viader F, Derlon JM, Baron JC. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol. 1996;40:216–26.

    Article  CAS  PubMed  Google Scholar 

  49. Marchal G, Beaudouin V, Rioux P, de la Sayette V, Le Doze F, Viader F, et al. Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke. A correlative PET-CT study with voxel-based data analysis. Stroke. 1996;27:599–606.

    Google Scholar 

  50. Hatazawa J, Shimosegawa E, Toyoshima H, Ardekani BA, Suzuki A, Okudera T, et al. Cerebral blood volume in acute brain infarction. A combined study with dynamic susceptibility contrast MRI and 99mTc-HMPAO-SPECT. Stroke. 1999;30:800–6.

    CAS  PubMed  Google Scholar 

  51. Mahagne MH, David O, Darcourt J, Migneco O, Dunac A, Chatel M, et al. Voxel-based mapping of cortical ischemic damage using Tc-99m L, l-ethyl cysteinate dimer SPECT in acute stroke. J Neuroimaging. 2004;14:23–32.

    PubMed  Google Scholar 

  52. Marchal G, Benali K, Iglesias S, Viader F, Derlon JM, Baron JC. Voxel-based mapping of irreversible ischaemic damage with PET in acute stroke. Brain. 1999;122:2387–400.

    Article  PubMed  Google Scholar 

  53. Connors BW, Malenka RC, Silva LR. Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J Physiol. 1988;406:443–68.

    CAS  PubMed  Google Scholar 

  54. d’Argy R, Persson A, Sedvall G. A quantitative cerebral and whole body autoradiographic study of a intravenously administered benzodiazepine antagonist 3H-Ro 15-1788 in mice. Psychopharmacology. 1987;92:8–13.

    Google Scholar 

  55. Mazière M, Hantraye P, Kaijima M, Dodd R, Guibert B, Prenant C, et al. Visualization by positron emission tomography of apparent regional heterogeneity of central type benzodiazepine receptors in the brain of living baboons. Life Sci. 1985;36:1609–16.

    Article  PubMed  Google Scholar 

  56. Sette G, Baron JC, Young AR, Miyazawa H, Tillet I, Barré L, et al. In vivo mapping of brain benzodiazepine receptor changes by positron emission tomography after focal ischemia in the anesthetized baboon. Stroke. 1993;24:2046–57.

    CAS  PubMed  Google Scholar 

  57. Schwartz RD, Yu X, Wagner J, Ehrmann M, Mileson BE. Cellular regulation of the benzodiazepine/GABA receptor: arachidonic acid, calcium, and cerebral ischemia. Neuropsychopharmacology. 1992;6:119–25.

    CAS  PubMed  Google Scholar 

  58. Heiss WD, Grond M, Thiel A, Ghaemi M, Sobesky J, Rudolf J, et al. Permanent cortical damage detected by flumazenil positron emission tomography in acute stroke. Stroke. 1998;29:454–61.

    CAS  PubMed  Google Scholar 

  59. Heiss WD, Kracht LW, Thiel A, Grond M, Pawlik G. Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain. 2001;124:20–9.

    Article  CAS  PubMed  Google Scholar 

  60. Guadagno JV, Jones PS, Aigbirhio FI, Wang D, Fryer TD, Day DJ, et al. Selective neuronal loss in rescued penumbra relates to hypoperfusion. Brain. 2008;131:2666–78.

    Article  CAS  PubMed  Google Scholar 

  61. Hatazawa J, Satoh T, Shimosegawa E, Okudera T, Inugami A, Ogawa T, et al. Evaluation of cerebral infarction with iodine 123-iomazenil SPECT. J Nucl Med. 1995;36:2154–61.

    CAS  PubMed  Google Scholar 

  62. Nakagawara J, Sperling B, Lassen NA. Incomplete brain infarction of reperfused cortex may be quantitated with iomazenil. Stroke. 1997;28:124–32.

    CAS  PubMed  Google Scholar 

  63. Dong Y, Fukuyama H, Nabatame H, Yamauchi H, Shibasaki H, Yonekura Y. Assessment of benzodiazepine receptors using iodine-123-labeled iomazenil single-photon emission computed tomography in patients with ischemic cerebrovascular disease. A comparison with PET study. Stroke. 1997;28:1776–82.

    CAS  PubMed  Google Scholar 

  64. Saur D, Buchert R, Knab R, Weiller C, Röther J. Iomazenil-single-photon emission computed tomography reveals selective neuronal loss in magnetic resonance-defined mismatch areas. Stroke. 2006;37:2713–9.

    Article  PubMed  Google Scholar 

  65. Chapman JD, Baer K, Lee J. Characteristics of the metabolism-induced binding of misonidazole to hypoxic mammalian cells. Cancer Res. 1983;43:1523–8.

    CAS  PubMed  Google Scholar 

  66. Hoffman JM, Rasey JS, Spence AM, Shaw DW, Krohn KA. Binding of the hypoxia tracer [3H]misonidazole in cerebral ischemia. Stroke. 1987;18:168–76.

    CAS  PubMed  Google Scholar 

  67. Mathias CJ, Welch MJ, Kilbourn MR, Jerabek PA, Patrick TB, Raichle ME, et al. Radiolabeled hypoxic cell sensitizers: tracers for assessment of ischemia. Life Sci. 1987;41:199–206.

    Article  CAS  PubMed  Google Scholar 

  68. Read SJ, Hirano T, Abbott DF, Sachinidis JI, Tochon-Danguy HJ, Chan JG, et al. Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole. Neurology. 1998;51:1617–21.

    CAS  PubMed  Google Scholar 

  69. Read SJ, Hirano T, Abbott DF, Markus R, Sachinidis JI, Tochon-Danguy HJ, et al. The fate of hypoxic tissue on 18F-fluoromisonidazole positron emission tomography after ischemic stroke. Ann Neurol. 2000;48:228–35.

    Article  CAS  PubMed  Google Scholar 

  70. Markus R, Reutens DC, Kazui S, Read S, Wright P, Chambers BR, et al. Topography and temporal evolution of hypoxic viable tissue identified by 18F-fluoromisonidazole positron emission tomography in humans after ischemic stroke. Stroke. 2003;34:2646–52.

    Article  CAS  PubMed  Google Scholar 

  71. Spratt NJ, Ackerman U, Tochon-Danguy HJ, Donnan GA, Howells DW. Characterization of fluoromisonidazole binding in stroke. Stroke. 2006;37:1862–7.

    Article  CAS  PubMed  Google Scholar 

  72. Bowler JV, Wade JP, Jones BE, Nijran KS, Steiner TJ. Natural history of spontaneous reperfusion of human cerebral infarcts as assessed by 99mTc HMPAO SPECT. J Neurol Neurosurg Psychiatry. 1998;64:90–7.

    Article  CAS  PubMed  Google Scholar 

  73. Oku N, Matsumoto M, Hashikawa K, Moriwaki H, Ishida M, Seike Y, et al. Intra-individual differences between technetium-99m-HMPAO and technetium-99m-ECD in the normal medial temporal lobe. J Nucl Med. 1997;38:1109–11.

    CAS  PubMed  Google Scholar 

  74. Asenbaum S, Brücke T, Pirker W, Pietrzyk U, Podreka I. Imaging of cerebral blood flow with technetium-99m-HMPAO and technetium-99m-ECD: a comparison. J Nucl Med. 1998;39:613–8.

    CAS  PubMed  Google Scholar 

  75. Sperling B, Lassen NA. Hyperfixation of HMPAO in subacute ischemic stroke leading to spuriously high estimates of cerebral blood flow by SPECT. Stroke. 1993;24:193–4.

    CAS  PubMed  Google Scholar 

  76. Cho I, Hayashida K, Imakita S, Kume N, Fukuchi K. Hemodynamic and metabolic state of hyperfixation with 99mTc-HMPAO brain SPECT in subacute stroke. Ann Nucl Med. 2000;14:159–63.

    Article  CAS  PubMed  Google Scholar 

  77. Colamussi P, Calò G, Sbrenna S, Uccelli L, Bianchi C, Cittanti C, et al. New insights of flow-independent mechanisms of 99mTc-HMPAO retention in nervous tissue: in vivo study. J Nucl Med. 1999;40:1556–62.

    CAS  PubMed  Google Scholar 

  78. Fujibayashi Y, Taniuchi H, Waki A, Yokoyama A, Ishii Y, Yonekura Y. Intracellular metabolism of 99mTc-d, l-HMPAO in vitro: a basic approach for understanding the hyperfixation mechanism in damaged brain. Nucl Med Biol. 1998;25:375–8.

    Article  CAS  PubMed  Google Scholar 

  79. Yamada N, Imakita S, Sakuma T. Value of diffusion-weighted imaging and apparent diffusion coefficient in recent cerebral infarctions: a correlative study with contrast-enhanced T1-weighted imaging. AJNR Am J Neuroradiol. 1999;20:193–8.

    CAS  PubMed  Google Scholar 

  80. Lassen NA, Sperling B. 99mTc-bicisate reliably images CBF in chronic brain diseases but fails to show reflow hyperemia in subacute stroke: report of a multicenter trial of 105 cases comparing 133Xe and 99mTc-bicisate (ECD, neurolite) measured by SPECT on same day. J Cereb Blood Flow Metab. 1994;Suppl 1:S44–8.

    Google Scholar 

  81. Tsuchida T, Nishizawa S, Yonekura Y, Sadato N, Iwasaki Y, Fujita T, et al. SPECT images of technetium-99m-ethyl cysteinate dimer in cerebrovascular diseases: comparison with other cerebral perfusion tracers and PET. J Nucl Med. 1994;35:27–31.

    CAS  PubMed  Google Scholar 

  82. Tamgac F, Moretti JL, Defer G, Weinmann P, Roussi A, Cesaro P. Non-matched images with 123I-IMP and 99mTc-bicisate single-photon emission tomography in the demonstration of focal hyperemia during the subacute phase of an ischaemic stroke. Eur J Nucl Med. 1994;21:254–7.

    Article  CAS  PubMed  Google Scholar 

  83. Shishido F, Uemura K, Inugami A, Ogawa T, Fujita H, Shimosegawa E, et al. Discrepant 99mTc-ECD images of CBF in patients with subacute cerebral infarction: a comparison of CBF, CMRO2 and 99mTc-HMPAO imaging. Ann Nucl Med. 1995;9:161–6.

    Article  CAS  PubMed  Google Scholar 

  84. Ogasawara K, Ogawa A, Ezura M, Konno H, Doi M, Kuroda K, et al. Dynamic and static 99mTc-ECD SPECT imaging of subacute cerebral infarction: comparison with 133Xe SPECT. J Nucl Med. 2001;42:543–7.

    CAS  PubMed  Google Scholar 

  85. Walovitch RC, Cheesman EH, Maheu LJ, Hall KM. Studies of retention mechanism of the brain perfusion imaging agent 99mTc-bicisate (99mTc-ECD). J Cereb Blood Flow Metab. 1994;Suppl 1:S4–11.

    Google Scholar 

  86. Inoue Y, Abe O, Kawakami T, Ozaki T, Inoue M, Yokoyama I, et al. Metabolism of 99mTc-ethylcysteinate dimer in infarcted brain tissue of rats. J Nucl Med. 2001;42:802–7.

    CAS  PubMed  Google Scholar 

  87. Block M, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69.

    Article  CAS  PubMed  Google Scholar 

  88. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94.

    Article  CAS  PubMed  Google Scholar 

  89. Neumann H, Kotter MR, Franklin RJ. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain. 2009;132:288–95.

    Article  CAS  PubMed  Google Scholar 

  90. Benavides J, Cornu P, Dennis T, Dubois A, Hauw JJ, MacKenzie ET, et al. Imaging of human brain lesions with an omega 3 site radioligand. Ann Neurol. 1988;24:708–12.

    Article  CAS  PubMed  Google Scholar 

  91. Gerhard A, Neumaier B, Elitok E, Glatting G, Ries V, Tomczak R, et al. In vivo imaging of activated microglia using [11C]PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport. 2000;11:2957–60.

    Article  CAS  PubMed  Google Scholar 

  92. Gerhard A, Schwarz J, Myers R, Wise R, Banati RB. Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage. 2005;24:591–5.

    Article  PubMed  Google Scholar 

  93. Price CJ, Wang D, Menon DK, Guadagno JV, Cleij M, Fryer T, et al. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke. 2006;37:1749–53.

    Article  PubMed  Google Scholar 

  94. Rojas S, Martín A, Arranz MJ, Pareto D, Purroy J, Verdaguer E, et al. Imaging brain inflammation with [11C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J Cereb Blood Flow Metab. 2007;27:1975–86.

    Article  CAS  PubMed  Google Scholar 

  95. Schroeter M, Dennin MA, Walberer M, Backes H, Neumaier B, Fink GR, et al. Neuroinflammation extends brain tissue at risk to vital peri-infarct tissue: a double tracer [11C]PK11195- and [18F]FDG-PET study. J Cereb Blood Flow Metab. 2009;29:1216–25.

    Article  CAS  PubMed  Google Scholar 

  96. Radlinska BA, Ghinani SA, Lyon P, Jolly D, Soucy JP, Minuk J, et al. Multimodal microglia imaging of fiber tracts in acute subcortical stroke. Ann Neurol. 2009;66:825–32.

    Article  PubMed  Google Scholar 

  97. Yuan J. Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis. 2009;14:469–77.

    Article  PubMed  Google Scholar 

  98. Broughton BR, Reutens DC, Soby CG. Apoptotoic mechanisms after cerebral ischemia. Stroke. 2009;40:e331–9.

    Article  PubMed  Google Scholar 

  99. Seigneuret M, Devaux PF. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci USA. 1984;81:3751–5.

    Article  CAS  PubMed  Google Scholar 

  100. Diaz C, Schroit AJ. Role of translocases in the generation of phosphatidylserine asymmetry. J Membr Biol. 1996;151:1–9.

    Article  CAS  PubMed  Google Scholar 

  101. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148:2207–16.

    CAS  PubMed  Google Scholar 

  102. Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT, Willems GM. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem. 1990;265:4923–8.

    CAS  PubMed  Google Scholar 

  103. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995;182:1545–56.

    Article  CAS  PubMed  Google Scholar 

  104. Blankenberg FG, Kalinyak J, Liu L, Koike M, Cheng D, Goris ML, et al. 99mTc-HYNIC-annexin V SPECT imaging of acute stroke and its response to neuroprotective therapy with anti-Fas ligand antibody. Eur J Nucl Med Mol Imaging. 2006;33:566–74.

    Article  CAS  PubMed  Google Scholar 

  105. Lorberboym M, Blankenberg FG, Sadeh M, Lampl Y. In vivo imaging of apoptosis in patients with acute stroke: correlation with blood-brain barrier permeability. Brain Res. 2006;1103:13–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohiko Oku.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oku, N., Kashiwagi, T. & Hatazawa, J. Nuclear neuroimaging in acute and subacute ischemic stroke. Ann Nucl Med 24, 629–638 (2010). https://doi.org/10.1007/s12149-010-0421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-010-0421-7

Keywords

Navigation