Skip to main content
Log in

Proteomic Investigation of Malignant Major Salivary Gland Tumors

  • Original Paper
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

The purpose of this study was to define the proteome profile of fine needle aspiration (FNA) samples of malignant major salivary gland tumors (MSGT) compared to benign counterparts, and to evaluate potential clinical correlations and future applications. Patients affected by MSGT (n = 20), pleomorphic adenoma (PA) (n = 37) and Warthin’s tumor (WT) (n = 14) were enrolled. Demographic, clinical and histopathological data were registered for all patients. FNA samples were processed to obtain the protein extracts. Protein separation was obtained by two-dimensional electrophoresis (2-DE) and proteins were identified by mass spectrometry. Western blot analysis was performed to validate the 2-DE results. Statistical differences between groups were calculated by the Mann–Whitney U test for non-normal data. Spearman’s rank correlation coefficient was calculated to evaluate correlations among suggested protein biomarkers and clinical parameters. Twelve and 27 differentially expressed spots were found for MSGT versus PA and MSGT versus WT, respectively. Among these, annexin-5, cofilin-1, peptidyl-prolyl-cistrans-isomerase-A and F-actin-capping-alpha-1 were able to differentiate MSGT from PA, WT, and healthy samples. Moreover, STRING analysis suggested cofilin-1 as a key node of protein interactions. Some of the overexpressed proteins are related to some clinical factors of our cohort, such as survival and outcome. Our results suggest potential protein biomarkers of MSGT, which could allow for more appropriate treatment plans, as well as shedding light on the molecular pathways involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ. WHO Classification of head and neck tumours. 4th ed. Lyon: IARC Press; 2017.

    Google Scholar 

  2. Pfeiffer J, Ridder GJ. Diagnostic value of ultrasound-guided core needle biopsy in patients with salivary gland masses. Int J Oral Maxillofac Surg. 2012;41:437–43.

    Article  CAS  PubMed  Google Scholar 

  3. Brennan PA, Davies B, Poller D, Meadb Z, Bayne D, Puxeddu R, et al. Fine needle aspiration cytology (FNAC) of salivary gland tumours: repeat aspiration provides further information in cases with an unclear initial cytological diagnosis. Br J Oral Maxillofac Surg. 2010;48:26–9.

    Article  PubMed  Google Scholar 

  4. Stewart CJ, MacKenzie K, McGarry GW, Mowat A. Fine-needle aspiration cytology of salivary gland: a review of 341 cases. Diagn Cytopathol. 2000;22:139–46.

    Article  CAS  PubMed  Google Scholar 

  5. Yaranal PJ, Umashankar T. Squamous cell carcinoma arising in Warthin’s tumour: a case report. J Clin Diagn Res. 2013;7:163–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Giusti L, Iacconi P, Ciregia F, Giannaccini G, Basolo F, Donatini GL, et al. Proteomic analysis of human thyroid fine needle aspiration fluid. J Endocrinol Invest. 2007;30:865–9.

    Article  CAS  PubMed  Google Scholar 

  7. Giusti L, Iacconi P, Ciregia F, Giannaccini G, Donatini GL, Baolo F, et al. Fine-needle aspiration of thyroid nodules: proteomic analysis to identify cancer biomarkers. J Proteome Res. 2008;7:4079–88.

    Article  CAS  PubMed  Google Scholar 

  8. Donadio E, Giusti L, Seccia V, Ciregia F, da Valle Y, Dallan I, et al. New insight into benign tumours of major salivary glands by proteomic approach. PLoS ONE. 2013;26:e71874.

    Article  CAS  Google Scholar 

  9. Giusti L, Baldini C, Bazzichi L, Ciregia F, Tonazzini I, Mascia G, et al. Proteome analysis of whole saliva: a new tool for rheumatic diseases–the example of Sjögren’s syndrome. Proteomics. 2007;7:1634–43.

    Article  CAS  PubMed  Google Scholar 

  10. Aude-Garcia C, Collin-Faure V, Luche S, Rabilloud T. Improvements and simplifications in in-gel fluorescent detection of proteins using ruthenium II tris-(bathophenanthroline disulfonate): the poor man’s fluorescent detection method. Proteomics. 2011;11:324–8.

    Article  CAS  PubMed  Google Scholar 

  11. Giusti L, Mantua V, Da Valle Y, Ciregia F, Ventroni T, Orsolini G, et al. Search for peripheral biomarkers in patients affected by acutely psychotic bipolar disorder: a proteomic approach. Mol BioSyst. 2014;10:1246–54.

    Article  CAS  PubMed  Google Scholar 

  12. Ciregia F, Giusti L, Da Valle Y, Donadio E, Consensi A, Giacomelli C, et al. A multidisciplinary approach to study a couple of monozygotic twins discordant for the chronic fatigue syndrome: a focus on potential salivary biomarkers. J Transl Med. 2013;11:243–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Giusti L, Da Valle Y, Bonotti A, Donadio E, Ciregia F, Ventroni T, et al. Comparative proteomic analysis of malignant pleural mesothelioma evidences an altered expression of nuclear lamin and filament-related proteins. Proteomics Clin Appl. 2014;8:258–68.

    Article  CAS  PubMed  Google Scholar 

  14. Donadio E, Giusti L, Cetani F, Da Valle Y, Ciregia F, Giannaccini G, et al. Evaluation of formalin-fixed paraffin-embedded tissues in the proteomic analysis of parathyroid glands. Proteome Sci. 2011;9:29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mutlu A, Ozturk M, Akpinar G, Kasap M, Kanli A. Proteomics analysis of adenoma of the human parotid gland. Eur Arch Otorhinolaryngol. 2017;274:3183–95.

    Article  PubMed  Google Scholar 

  16. Busch A, Bauer L, Wardelmann E, Rudack C, Grünewald I, Stenner M. Prognostic relevance of epithelial-mesenchymal transition and proliferation in surgically treated primary parotid gland cancer. J Clin Pathol. 2017;70:403–9.

    Article  CAS  PubMed  Google Scholar 

  17. Schneider S, Kloimstein P, Pammer J, Brannath W, Grasl MCh, Erovic BM. New diagnostic markers in salivary gland tumors. Eur Arch Otorhinolaryngol. 2014;271:1999–2007.

    Article  PubMed  Google Scholar 

  18. Matse JH, Yoshizawa J, Wang X, Elashoff D, Bolscher JG, Veerman EC, et al. Human salivary micro-RNA in patients with parotid salivary gland neoplasms. PLoS ONE. 2015;10:e0142264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Longuespee R, Boyon C, Castellier C, Jacquet A, Desmons A, Kerdraon O, et al. The C-terminal fragment of the immunoproteasome PA28S (Reg alpha) as an early diagnosis and tumor relapse biomarker: evidence from mass spectrometry profiling. Histochem Cell Biol. 2012;138:141–54.

    Article  CAS  PubMed  Google Scholar 

  20. Lemaire R, Menguellet SA, Stauber J, Marchaudon V, Lucot JP, Collinet P, et al. Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. J Proteome Res. 2007;6:4127–34.

    Article  CAS  PubMed  Google Scholar 

  21. Feng X, Jiang Y, Xie L, Jiang L, Li J, Sun C, et al. Overexpression of proteasomal activator PA28α serves as a prognostic factor in oral squamous cell carcinoma. J Exp Clin Cancer Res. 2016;35:35–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kim K, McCully ME, Bhattacharya N, Butler B, Sept D, Cooper JA. Structure/function analysis of the interaction of phosphatidylinositol 4,5-bisphosphate with actin-capping protein: implications for how capping protein binds the actin filament. J Biol Chem. 2007;282:5871–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kanellos G, Frame MC. Cellular functions of the ADF/cofilin family at a glance. J Cell Sci. 2016;129:3211–8.

    Article  CAS  PubMed  Google Scholar 

  24. Shishkin S, Eremina L, Pashintseva N, Kovalev L, Kovaleva M. Cofilin-1 and other ADF/cofilin superfamily members in human malignant cells. Int J Mol Sci. 2016;18:E10.

    Article  PubMed  CAS  Google Scholar 

  25. Wang H, Tao L, Jin F, Gu H, Dai X, Ni T, et al. Cofilin 1 induces the epithelial-mesenchymal transition of gastric cancer cells by promoting cytoskeletal rearrangement. Oncotarget. 2017;8:39131–42.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Madak-Erdogan Z, Ventrella R, Petry L, Katzenellenbogen BS. Novel roles for ERK5 and cofilin as critical mediators linking ERα-driven transcription, actin reorganization, and invasiveness in breast cancer. Mol Cancer Res. 2014;12:714–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Wang Z, Huang D, Wu C, Li H, Zhang X, et al. LMO2 promotes tumor cell invasion and metastasis in basal-type breast cancer by altering actin cytoskeleton remodeling. Oncotarget. 2017;8:9513–24.

    Article  PubMed  Google Scholar 

  28. Wang W, Mouneimne G, Sidani M, Wyckoff J, Chen X, Makris A, et al. The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J Cell Biol. 2006;173:395–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oleinik NV, Helke KL, Kistner-Griffin E, Krupenko NI, Krupenko SA. Rho GTPases RhoA and Rac1 mediate effects of dietary folate on metastatic potential of A549 cancer cells through the control of cofilin phosphorylation. J Biol Chem. 2014;289:26383–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Satoh M, Takano S, Sogawa K, Noda K, Yoshitomi H, Ishibashi M, et al. Immune-complex level of cofilin-1 in sera is associated with cancer progression and poor prognosis in pancreatic cancer. Cancer Sci. 2017;108:795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang ZL, Miao X, Xiong L, Zou Q, Yuan Y, Li J, et al. CFL1 and Arp3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinomas of gallbladder. Cancer Invest. 2013;31:132–9.

    Article  CAS  PubMed  Google Scholar 

  32. Castro MA, Dal-Pizzol F, Zdanov S, Soares M, Müller CB, Lopes FM, et al. CFL1 expression levels as a prognostic and drug resistance marker in nonsmall cell lung cancer. Cancer. 2010;116:3645–55.

    Article  CAS  PubMed  Google Scholar 

  33. Nigro P, Pompilio G, Capogrossi MC. Cyclophilin A: a key player for human disease. Cell Death Dis. 2013;4:e888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Obchoei S, Wongkhan S, Wongkham C, Li M, Yao Q, Chen C. Cyclophilin A: potential functions and therapeutic target for human cancer. Med Sci Monit. 2009;15:221–32.

    Google Scholar 

  35. Li M, Zhai Q, Bharadwaj U, Wang H, Li F, Fisher WE, et al. Cyclophilin A is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. Cancer. 2006;106:2284–94.

    Article  CAS  PubMed  Google Scholar 

  36. Huang C, Sun Z, Sun Y, Chen X, Zhu X, Fan C, et al. Association of increased ligand cyclophilin A and receptor CD147 with hypoxia, angiogenesis, metastasis and prognosis of tongue squamous cell carcinoma. Histopathology. 2012;60:793–803.

    Article  PubMed  Google Scholar 

  37. Tao Y, Wang K, Chen Z, Long L, Wu Q, Cui F, et al. Correlation of five secretory proteins with the nasopharyngeal carcinoma metastasis and the clinical applications. Oncotarget. 2017;8:29383–94.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Feng W, Xin Y, Xiao Y, Li W, Sun D. Cyclophilin A enhances cell proliferation and xenografted tumor growth of early gastric cancer. Dig Dis Sci. 2015;60:2700–11.

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Guo H, Dong D, Wu H, Li E. Expression and prognostic relevance of cyclophilin A and matrix metalloproteinase 9 in esophageal squamous cell carcinoma. Diagn Pathol. 2013;8:207–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yang J, Zhou M, Zhao R, Peng S, Luo Z, Li X, et al. Identification of candidate biomarkers for the early detection of nasopharyngeal carcinoma by quantitative proteomic analysis. J Proteomics. 2014;109:162–75.

    Article  CAS  PubMed  Google Scholar 

  41. Cheng S, Luo M, Ding C, Peng C, Lv Z, Tong R, et al. Downregulation of Peptidylprolyl isomerase A promotes cell death and enhances doxorubicin-induced apoptosis in hepatocellular carcinoma. Gene. 2016;591:236–44.

    Article  CAS  PubMed  Google Scholar 

  42. Peng B, Guo C, Guan H, Liu S, Sun MZ. Annexin A5 as a potential marker in tumors. Clin Chim Acta. 2014;427:42–8.

    Article  CAS  PubMed  Google Scholar 

  43. Giusti L, Lucacchini A. Proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev Proteomics. 2013;10:165–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs Diana Elizabeth Hearn for her support in revising and translating the manuscript and Ms. Anna Giovinazzo for her great help in organizing the scientific work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Giusti.

Ethics declarations

Conflicts of interest

None of the authors have any conflicts of interest to disclose.

Ethics Approval

This study was approved by the the Local Ethics Committee (Comitato Etico Area Vasta Nord Ovest—CEAVNO, Azienda Ospedaliera Universitaria Pisana; Reference Number 29937). All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Patients provided written, informed consent to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seccia, V., Navari, E., Donadio, E. et al. Proteomic Investigation of Malignant Major Salivary Gland Tumors. Head and Neck Pathol 14, 362–373 (2020). https://doi.org/10.1007/s12105-019-01040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-019-01040-2

Keywords

Navigation