Skip to main content
Log in

Integrative diagnosis of cancer by combining CTCs and associated peripheral blood cells in liquid biopsy

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Circulating tumor cells (CTCs), as cells shed from solid tumor into the vasculature, play a significant role in tumor metastasis. In the peripheral blood, immune cells and stromal cells can interact with CTCs and influence their biological behaviors of survival, proliferation, dissemination, and immune evasion. These peripheral blood cells can evolve synergistically with CTCs to constitute the liquid microenvironment which is essential for tumor progression. Here, we review the mechanisms of peripheral blood cells interacting with CTCs and uncover their effects on both CTCs and tumor metastasis. Then, we introduce the applications of these CTC-associated peripheral blood cells in the clinical setting. Besides, some peripheral blood cell subsets are of additional clinical values to CTCs in cancer diagnosis and prognosis. To improve the clinical utility of CTCs, an integrative analysis of CTCs and associated peripheral blood cells should be advocated for, which could provide a novel insight into tumor biology and offer comprehensive information in cancer diagnosis, prognosis, and therapy efficacy evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hamilton G, Rath B. Circulating tumor cell interactions with macrophages: implications for biology and treatment. Trans Lung Cancer Res. 2017;6(4):418–30.

    Article  CAS  Google Scholar 

  2. Fidler IJ. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst. 1970;45(4):773–82.

    CAS  PubMed  Google Scholar 

  3. Noman MZ, Messai Y, Muret J, Hasmim M, Chouaib S. Crosstalk between CTC, immune system and hypoxic tumor microenvironment. Cancer Microenviron. 2014;7(3):153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liljefors M, Nilsson B, Hjelm Skog AL, Ragnhammar P, Mellstedt H, Frodin JE. Natural killer (NK) cell function is a strong prognostic factor in colorectal carcinoma patients treated with the monoclonal antibody 17-1A. Int J Cancer. 2003;105(5):717–23.

    Article  CAS  PubMed  Google Scholar 

  5. Vetsika EK, Koinis F. A circulating subpopulation of monocytic myeloid-derived suppressor cells as an independent prognostic/predictive factor in untreated non-small lung cancer patients. J Immunol Res. 2014;2014:659294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Guthrie GJ, Charles KA, Roxburgh CS, Horgan PG, Mcmillan DC, Clarke SJ. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit Rev Oncol Hematol. 2013;88(1):218–30.

    Article  PubMed  Google Scholar 

  7. Zhou Y, Wang B, Wu J, Zhang C, Zhou Y, Yang X, et al. Association of preoperative EpCAM circulating tumor cells and peripheral treg cell levels with early recurrence of hepatocellular carcinoma following radical hepatic resection. BMC Cancer. 2016;16:506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ao Z, Shah SH, Machlin LM, Parajuli R, Miller PC, Rawal S, et al. Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Cancer Res. 2015;75(22):4681–7.

    Article  CAS  PubMed  Google Scholar 

  9. Krasnova Y, Putz EM, Smyth MJ, Souza-Fonseca-Guimaraes F. Bench to bedside: NK cells and control of metastasis. Clin Immunol. 2017;177:50–9.

    Article  CAS  PubMed  Google Scholar 

  10. Uchida A. The cytolytic and regulatory role of natural killer cells in human neoplasia. Rev Cancer. 1986;865(3):329–40.

    CAS  Google Scholar 

  11. Brodbeck T, Nehmann N, Bethge A, Wedemann G, Schumacher U. Perforin-dependent direct cytotoxicity in natural killer cells induces considerable knockdown of spontaneous lung metastases and computer modelling-proven tumor cell dormancy in a HT29 human colon cancer xenograft mouse model. Mol Cancer. 2014;13:244.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yie S-M, Luo B, Ye N-Y, Xie K, Ye S-R. Detection of Survivin-expressing circulating cancer cells in the peripheral blood of breast cancer patients by a RT-PCR ELISA. Clin Exp Metas. 2006;23(5):279–89.

    Article  CAS  Google Scholar 

  13. Vegran F, Boidot R. Survivin-3B promotes chemoresistance and immune escape by inhibiting caspase-8 and -6 in cancer cells. Oncoimmunology. 2013;2(11):e26328.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sun W-W, Xu Z-H, Lian P, Gao B-L, Hu J-A. Characteristics of circulating tumor cells in organ metastases, prognosis, and T lymphocyte mediated immune response. Onco Targets Therapy. 2017;10:2413–24.

    Article  CAS  Google Scholar 

  15. Green TL, Santos MF, Ejaeidi AA, Craft BS, Lewis RE, Cruse JM. Toll-like receptor (TLR) expression of immune system cells from metastatic breast cancer patients with circulating tumor cells. Exp Mol Pathol. 2014;97(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  16. Gruber I, Landenberger N, Staebler A, Hahn M, Wallwiener D, Fehm T. Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer. Anticancer Res. 2013;33(5):2233–8.

    CAS  PubMed  Google Scholar 

  17. Wang X, Sun Q, Liu Q, Wang C, Yao R, Wang Y. CTC immune escape mediated by PD-L1. Med Hypotheses. 2016;93:138–9.

    Article  PubMed  CAS  Google Scholar 

  18. Mazel M, Jacot W, Pantel K, Bartkowiak K, Topart D, Cayrefourcq L, et al. Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol. 2015;9(9):1773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, et al. CD4 + CD25 + regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med. 2005;202(8):1075–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, Von Boehmer H, et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci USA. 2005;102(2):419–24.

    Article  CAS  PubMed  Google Scholar 

  21. Noy R, Pollard W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Adams DL, Martin SS, Alpaugh RK, Charpentier M, Tsai S, Bergan RC, et al. Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci USA. 2014;111(9):3514–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Medrek C, Ponten F, Jirstrom K, Leandersson K. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer. 2012;12:306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang X. Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett. 2013;332(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  25. Hamilton G, Rath B. Circulating tumor cell interactions with macrophages: implications for biology and treatment. Transl Lung Cancer Res. 2017;6(4):418–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell. 2008;13(1):23–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Q, Liao Q, Zhao Y. Myeloid-derived suppressor cells (MDSC) facilitate distant metastasis of malignancies by shielding circulating tumor cells (CTC) from immune surveillance. Med Hypotheses. 2016;87:34–9.

    Article  CAS  PubMed  Google Scholar 

  28. Powell DR, Huttenlocher A. Neutrophils in the Tumor Microenvironment. Trends Immunol. 2016;37(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  29. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS. Il-17-producing [gamma][delta] t cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522(7556):345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, et al. Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov. 2016;6(6):630–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liang W, Ferrara N. The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunol Res. 2016;4(2):83–91.

    Article  CAS  PubMed  Google Scholar 

  32. Cools-Lartigue J, Spicer J, Mcdonald B, Gowing S, Chow S, Giannias B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Investig. 2013;123(8):3446–58.

    Article  CAS  PubMed Central  Google Scholar 

  33. Orimo A, Gupta P, Sgroi C, Arenzana F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.

    Article  CAS  PubMed  Google Scholar 

  34. Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I, et al. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal. 2012;16(11):1264–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Raz Y, Erez N. An inflammatory vicious cycle: fibroblasts and immune cell recruitment in cancer. Exp Cell Res. 2013;319(11):1596–603.

    Article  CAS  PubMed  Google Scholar 

  36. Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D, et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA. 2010;107(50):21677–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sierko E, Wojtukiewicz MZ. Platelets and angiogenesis in malignancy. Semin Thromb Hemost. 2004;30(1):95–108.

    Article  CAS  PubMed  Google Scholar 

  39. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stegner D, Dutting S, Nieswandt B. Mechanistic explanation for platelet contribution to cancer metastasis. Thromb Res. 2014;133(Suppl 2):S149–57.

    Article  CAS  PubMed  Google Scholar 

  41. Li J, King MR. Adhesion receptors as therapeutic targets for circulating tumor cells. Front Oncol. 2012;2:79.

    PubMed  PubMed Central  Google Scholar 

  42. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 2012;12(4):239–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lou XL, Sun J, Gong SQ, Yu XF, Gong R, Deng H. Interaction between circulating cancer cells and platelets: clinical implication. Chin J Cancer Res. 2015;27(5):450–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Joosse SA, Hannemann J, Spotter J, Bauche A, Andreas A, Muller V, et al. Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells. Clin Cancer Res. 2012;18(4):993–1003.

    Article  CAS  PubMed  Google Scholar 

  45. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009;11(4):R46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lugini L, Cecchetti S, Huber V, Luciani F, Macchia G, Spadaro F, et al. Immune surveillance properties of human NK cell-derived exosomes. J Immunol. 2012;189(6):2833–42.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Xie Y, Li W, Chibbar R, Xiong S, Xiang J. CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell Mol Immunol. 2011;8(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  48. Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 2013;41(1):245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol. 2008;180(11):7249–58.

    Article  CAS  PubMed  Google Scholar 

  50. Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL, et al. Tumor exosomes expressing Fas ligand mediate CD8 + T-cell apoptosis. Blood Cells Mol Dis. 2005;35(2):169–73.

    Article  CAS  PubMed  Google Scholar 

  51. Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  52. Wang D, An G, Xie S, Yao Y, Feng G. The clinical and prognostic significance of CD14(+)HLA-DR(-/low) myeloid-derived suppressor cells in hepatocellular carcinoma patients receiving radiotherapy. Tumour Biol. 2016;37(8):10427–33.

    Article  CAS  PubMed  Google Scholar 

  53. Lee Y, Kim SH, Han J-Y, Kim HT, Yun T, Lee JS. Early neutrophil-to-lymphocyte ratio reduction as a surrogate marker of prognosis in never smokers with advanced lung adenocarcinoma receiving gefitinib or standard chemotherapy as first-line therapy. J Cancer Res Clin Oncol. 2012;138(12):2009–16.

    Article  CAS  PubMed  Google Scholar 

  54. Pasero C, Gravis G, Granjeaud S, Guerin M, Thomassin-Piana J, Rocchi P, et al. Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget. 2015;6(16):14360–73.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65(6):2457–64.

    Article  CAS  PubMed  Google Scholar 

  56. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res. 2003;9(12):4404–8.

    PubMed  Google Scholar 

  57. Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 2007;132(7):2328–39.

    Article  PubMed  Google Scholar 

  58. Mu Z, Wang C, Ye Z, Rossi G, Sun C, Li L, et al. Prognostic values of cancer associated macrophage-like cells (CAML) enumeration in metastatic breast cancer. Breast Cancer Res Treat. 2017;165(3):733–41.

    Article  CAS  PubMed  Google Scholar 

  59. Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;165(4):780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gonzalez VD, Samusik N, Chen TJ, Savig ES, Aghaeepour N, Quigley DA, et al. Commonly occurring cell subsets in high-grade serous ovarian tumors identified by single-cell mass cytometry. Cell Rep. 2018;22(7):1875–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gerdtsson E, Pore M, Thiele J-A, Sandstrom Gerdtsson A, Daisy Malihi P, Nevarez R, et al. Multiplex protein detection on circulating tumor cells from liquid biopsies using imaging mass cytometry. Converg Sci Phys Oncol. 2018;4:15002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Innovation Fostering Foundation of Zhongnan Hospital of Wuhan University (cxpy20160025), and National Natural Science Foundation of China (No. 81672114). This work was also funded by Applied Basic Research Program of Science and Technology Bureau Foundation of Wuhan (No. 2016060101010054) and Wuhan City health and family planning medical talented youth development project.

Author information

Authors and Affiliations

Authors

Contributions

F-BW, WWZ, and YR conceived and designed the study. WWZ and YR drafted the manuscript. QL and YZ participated in the literature search and graphic design.

Corresponding author

Correspondence to F.-B. Wang.

Ethics declarations

Conflict of interest

All the authors declare that they have no any conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the author.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WW., Rong, Y., Liu, Q. et al. Integrative diagnosis of cancer by combining CTCs and associated peripheral blood cells in liquid biopsy. Clin Transl Oncol 21, 828–835 (2019). https://doi.org/10.1007/s12094-018-02004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-018-02004-8

Keywords

Navigation