Skip to main content
Log in

Targeting the microenvironment of pancreatic cancer: overcoming treatment barriers and improving local immune responses

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Historically, patients diagnosed with metastatic pancreatic cancer have faced a grim prognosis. The survival benefit seen with systemic chemotherapies and even combinations thereof have been disappointing. However, growing data suggest that the microenvironment of pancreatic cancer may be contributing to this poor prognosis. This microenvironment has a dense fibrotic stroma, and is hypoxic and highly immunosuppressive, all of which pose barriers to treatment. Newer strategies looking to disrupt the fibrotic stroma, target hypoxic areas, and improve local immune responses in the tumor microenvironment are currently undergoing clinical evaluation and seem to offer great promise. In addition to these therapies, preclinical work evaluating novel cytotoxic agents including nanoparticles has also been encouraging. While much research still needs to be done, these strategies offer new hope for patients with pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SEER Stat Fact Sheets: Pancreatic Cancer. http://seer.cancer.gov/statfacts/html/pancreas.html. Accessed 30 July 2015.

  2. Siegel R, Miller K. Jemal A Cancer statistics. CA. Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  3. Artinyan A, Soriano PA, Prendergast C, Low T, Ellenhorn JD, Jim J. The anatomic location of pancreatic cancer is a prognostic factor for survival. HPB (Oxford). 2008;10(5):371–6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sinn M, Liersch T, Gellert K, Messmann H, Bechstein W, Walschmidt D, et al. CONKO-005: adjuvant therapy in R0 resected pancreatic cancer patients with gemcitabine plus Erlotinib vs. Gemcitabine for 24 weeks. ASCO 2015. J Clin Oncol 2015;33 (suppl; abstr 4007).

  5. Burris HA III, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.

    CAS  PubMed  Google Scholar 

  6. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al. Erlotinib Plus Gemcitabine Compared With Gemcitabine Alone in Patients With Advanced Pancreatic Cancer: A Phase III Trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6.

  7. Heinemann V, Block S, Hinke A, Labianca R, Louvet C. Meta-analysis of randomized trials: evaluation of benefit from gemcitabine-based combination chemotherapy applied in advanced pancreatic cancer. BMC Cancer. 2008;8:82. doi:10.1186/1471-2407-8-82.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouran Y, et al. FOLFIRINOX vs. gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.

    Article  CAS  PubMed  Google Scholar 

  9. Von Hoff D, Ervin T, Arena F, Chiorean G, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.

    Article  Google Scholar 

  10. Hagg J, Howells LM, Garcea G, Metcalfe MS, Steward WP, Dennison AR, et al. Pancreatic stellate cells and pancreas cancer: current perspectives and future strategies. Eur J Cancer. 2014;50(15):2570–82.

  11. Dangi-Garimella S, Krantz SB, Barron MR, Shields MA, Heiferman MJ, Grippo PJ, et al. Three-dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2. Cancer Res. 2011;71(3):1019–28.

    Article  CAS  PubMed  Google Scholar 

  12. Neesse A, Frese KK, Bapiro TE, Nakagawa T, Sternlicht M, Seeley T, et al. CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proc Natl Acad Sci U S A. 2013;110:12325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21:418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hingorani SR, Harris WP, Hendifar AE, Bullock AJ, Wu XW, Huang Y, et al. High response rate and PFS with PEGPH20 added to nab-paclitaxel/gemcitabine in stage IV previously untreated pancreatic cancer patients with high-HA tumors: Interim results of a randomized phase II study. J Clin Oncol. 2015;33 (suppl; abstr 4006).

  15. Kindler HL, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). JCO. 2010;28(22):3617–22.

    Article  CAS  Google Scholar 

  16. Van Cutsem E, Vervenne WL, Bennouna J, Humblet Y, Gill S, Van Laethem JL, et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. JCO. 2009;27(13):2231–7.

    Article  Google Scholar 

  17. Borad M, Reddy SG, Bahary N, Uronis HE, Sigal D, Cohn AL, et al. Randomized Phase II trial of gemcitabine plus th-302 vs. gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol. 2015;33(13):1475–81.

  18. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 2006;12(18):5423–34.

  19. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F, et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res. 2011;167(2):e211–9.

  20. Shibuya KC, Goel VK, Xiong W, Sham JG, Pollack SM, Leahy AM, et al. Pancreatic ductal adenocarcinoma contains an effector and regulatory immune cell infiltrate that is altered by multimodal neoadjuvant treatment. PLoS One 2014;9(5):e96565.

  21. Geng L, Huang D, Qian Y, Deng J, Li D, Zhang J, et al. B7-H1 up-regulated expression in human pancreatic carcinoma tissue associates with tumor progression. J Cancer Res Clin Oncol. 2008;134:1021–7.

  22. Truty MJ, Urrutia R. Basics of TGF-ß and Pancreatic Cancer. Pancreatology. 2007;7(5–6):423–35.

  23. Wrszesinski S, Wan YY, Flavell RA. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res. 2007;13(18 Pt 1):5262–70.

  24. Oettle H, Seufferlein T, Luger T, Schmid RM, von Wichert G, Endlicher E, et al. Final results of a phase I/II study in patients with pancreatic cancer, malignant melanoma, and colorectal carcinoma with trabedersen. J Clin Oncol. 2012;30 (suppl; abstr 4034).

  25. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331:1612–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brahmer JR, Scott TS, Chow LQM, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. NEJM. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US, et al. Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother. 2010;33(8):828–33.

    Article  CAS  PubMed  Google Scholar 

  28. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    Article  CAS  PubMed  Google Scholar 

  29. Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, et al. OS analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(7):1099–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, et al. Ipilimumab vs. placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12.

  31. Hodi S, O’day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. NEJM. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rahma OE, Duffy A, Liewehr DJ, Steinberg SM, Greten TF. Second-line treatment in advanced pancreatic cancer: a comprehensive analysis of published clinical trials. Ann Oncol. 2013;24(8):1972–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res. 2005;11:6713.

    Article  CAS  PubMed  Google Scholar 

  34. Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol. 2009;9(7–8):900–9.

    Article  CAS  PubMed  Google Scholar 

  35. Garnett CT, Palena C, Chakraborty M, Tsang KY, Schlom J, Hodge JW. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 2004;64:7985–94.

    Article  CAS  PubMed  Google Scholar 

  36. Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res. 2004;64:4328–37.

    Article  CAS  PubMed  Google Scholar 

  37. Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN, et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol. 2003;170:6338–47.

    Article  CAS  PubMed  Google Scholar 

  38. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA. 2013;110:20212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dodson LF, Hawkins WG, Goedegebuure P. Potential targets for pancreatic cancer immunotherapeutics. Immunotherapy. 2011;3(4):517–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lutz E, Yeo CJ, Lillemoe KD, Biedrzycki B, Kobrin B, Herman J, et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma: a phase II trial of safety, efficacy, and immune activation. Ann Surg. 2011;253:328–35.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Le DT, Brockstedt DG, Nir-Paz R, Hampl J, Mathur S, Nemunaitis J, et al. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res. 2012;18:858–68.

    Article  CAS  PubMed  Google Scholar 

  42. Le D, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, et al. Safety and Survival With GVAX Pancreas Prime and Listeria Monocytogenes—expressing Mesothelin (CRS-207) Boost Vaccines for Metastatic Pancreatic Cancer. JCO 2015.

  43. Le D, Lutz E, Uram JN, Sugars EA, Onners B, Solt S, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 2013;36:382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim SH, Castro F, Paterson Y, Gravekamp C. High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer Res. 2009;69(14):5860–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Quispe-Tintaya W, Chandra D, Jahangir A, Harris M, Casadevll A, Dadachoa E, et al. Nontoxic radioactive Listeria at is a highly effective therapy against metastatic pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110 (21):8668–73

  46. Pardoll D. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cherukuri P, Curley SA. Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells. Methods Mol Biol. 2010;624:359–73.

    Article  CAS  PubMed  Google Scholar 

  48. Banobre-Lopez M, Teijeiro A, Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother. 2013;18(6):397–400.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Basel MT, Balivada S, Wang H, Shrestha TB, Seo GM, Pyle M, et al. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomedicine. 2012;7:297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kossatz S, Ludwig R, Dahring H, Ettelt V, Rimkus G, Marciello M, et al. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Pharmaceutical Res. 2014;31(12):3274–88.

    Article  CAS  Google Scholar 

  51. Wang L, Dong J, Ouyang W, Wang X, Tang J. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. Oncol Rep. 2012;27(3):719–26.

    CAS  PubMed  Google Scholar 

  52. Huang HS, Hainfeld JF. Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomedicine. 2013;8:2521–32.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Strauss.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Informed consent

No original research involving humans and/or animals was conducted for this manuscript. As such, informed consent was not necessary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strauss, J., Alewine, C., Figg, W.D. et al. Targeting the microenvironment of pancreatic cancer: overcoming treatment barriers and improving local immune responses. Clin Transl Oncol 18, 653–659 (2016). https://doi.org/10.1007/s12094-015-1459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-015-1459-8

Keywords

Navigation