Skip to main content
Log in

Possible reparative effect of low-intensity pulsed ultrasound (LIPUS) on injured meniscus

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Menisci are a pair of crescent-shaped fibrocartilages, particularly of which their inner region of meniscus is an avascular tissue. It has characteristics similar to those of articular cartilage, and hence is inferior in healing. We previously reported that low-intensity pulsed ultrasound (LIPUS) treatment stimulates the production of CCN2/CTGF, a protein involved in repairing articular cartilage, and the gene expression of major cartilage matrices such as type II collagen and aggrecan in cultured chondrocytes. Therefore, in this present study, we investigated whether LIPUS has also favorable effect on meniscus cells and tissues. LIPUS applied with a 60 mW/cm2 intensity for 20 min stimulated the gene expression and protein production of CCN2 via ERK and p38 signaling pathways, as well as gene expression of SOX9, aggrecan, and collagen type II in human inner meniscus cells in culture, and slightly stimulated the gene expression of CCN2 and promoted the migration in human outer meniscus cells in culture. LIPUS also induced the expression of Ccn2, Sox9, Col2a1, and Vegf in rat intact meniscus. Furthermore, histological evaluations showed that LIPUS treatment for 1 to 4 weeks promoted healing of rat injured lateral meniscus, as evidenced by better and earlier angiogenesis and extracellular matrix synthesis. The data presented indicate that LIPUS treatment might prevent meniscus from degenerative change and exert a reparative effect on injured meniscus via up-regulation of repairing factors such as CCN2 and that it might thus be useful for treatment of an injured meniscus as a non-invasive therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CCN:

Cysteine-rich 61, Connective tissue growth factor, Nephroblastoma-overexpressed

CCN2:

CCN family member 2, Connective tissue growth factor

CCN3:

CCN family member 3, Nephroblastoma-overexpressed

DMEM:

Dulbecco’s modified Eagle’s medium

ECM:

Extracellular matrix

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

LIPUS:

Low-intensity pulsed ultrasound

OA:

Osteoarthritis

PAGE:

Polyacrylamide gel electrophoresis

PDGF:

Platelet-derived growth factor

PVDF:

Polyvinylidene difluoride

PRP:

Platelet-rich plasma

LM:

Lateral meniscus

siRNA:

Small interfering RNA

SOX9:

Sry-type high-mobility-group box 9

TKA:

Total knee arthroplasty

TGF-β:

Transforming growth factor-beta

VEGF:

Vascular endothelial growth factor

References

  • Abd El Kader T, Kubota S, Nishida T, Hattori T, Aoyama E, Janune D, Hara ES, Ono M, Tabata Y, Kuboki T, Takigawa M (2014) The regenerative effects of CCN2 independent modules on chondrocytes in vitro and osteoarthritis models in vivo. Bone 59:180–188

    Article  CAS  PubMed  Google Scholar 

  • Aoyama E, Kubota S, Takigawa M (2012) CCN2/CTGF binds to fibroblast growth factor receptor 2 and modulates its signaling. FEBS Lett 586:4270–4275

    Article  CAS  PubMed  Google Scholar 

  • Arnoczky SP, Warren RF (1982) Microvasculature of the human meniscus. Am J Sports Med 10:90–95

    Article  CAS  PubMed  Google Scholar 

  • Augello A, De Bari C (2010) The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther 21:1226–1238

    Article  CAS  PubMed  Google Scholar 

  • Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  CAS  Google Scholar 

  • Chahla J, Kennedy NI, Geeslin AG, Moatshe G, Cinque ME, DePhillipo NN, LaPrade RF (2017) Meniscal repair with fibrin clot augmentation. Arthrosc Tech 6:e2065–e2069

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng K, Xia P, Lin Q, Shen S, Gao M, Ren S, Li X (2014) Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes. Ultrasound Med Biol 40:1609–1618

    Article  PubMed  Google Scholar 

  • Furumatsu T, Ozaki T (2017) An analysis of pathological activities of CCN proteins in joint disorders: mechanical stretch-mediated CCN2 expression in cultured meniscus cells. Methods Mol Biol 1489:533–542

  • Furumatsu T, Kanazawa T, Yokoyama Y, Abe N, Ozaki T (2011) Inner meniscus cells maintain higher chondrogenic phenotype compared with outer meniscus cells. Connect Tissue Res 52:459–465

    Article  CAS  PubMed  Google Scholar 

  • Furumatsu T, Kanazawa T, Miyake Y, Kubota S, Takigawa M, Ozaki T (2012) Mechanical stretch increases Smad3-dependent CCN2 expression in inner meniscus cells. J Orthop Res 30:1738–1745

    Article  CAS  PubMed  Google Scholar 

  • Furumatsu T, Matsumoto E, Kanazawa T, Fujii M, Lu Z, Kajiki R, Ozaki T (2013) Tensile strain increases expression of CCN2 and COL2A1 by activating TGF-beta-Smad2/3 pathway in chondrocytic cells. J Biomech 46:1508–1515

    Article  PubMed  Google Scholar 

  • Griffin JW, Hadeed MM, Werner BC, Diduch DR, Carson EW, Miller MD (2015) Platelet-rich plasma in meniscal repair: does augmentation improve surgical outcomes? Clin Orthop Relat Res 473:1665–1672

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadjiargyrou M, McLeod K, Ryaby JP, Rubin C (1998) Enhancement of fracture healing by low intensity ultrasound. Clin Orthop Relat Res 355S:S216–S229

    Article  Google Scholar 

  • Hatsushika D, Muneta T, Nakamura T, Horie M, Koga H, Nakagawa Y, Tsuji K, Hishikawa S, Kobayashi E, Sekiya I (2014) Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model. Osteoarthr Cartil 22:941–950

    Article  CAS  PubMed  Google Scholar 

  • Jang KW, Ding L, Seol D, Lim TH, Buckwalter JA, Martin JA (2014) Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway. Ultrasound Med Biol 40:1177–1186

    Article  PubMed  PubMed Central  Google Scholar 

  • Janune D, Kubota S, Nishida T, Kawaki H, Perbal B, Iida S, Takigawa M (2011) Novel effects of CCN3 that may direct the differentiation of chondrocytes. FEBS Lett 585:3033–3040

    Article  CAS  PubMed  Google Scholar 

  • Janune D, Abd El Kader T, Aoyama E, Nishida T, Tabata Y, Kubota S, Takigawa M (2017) Novel role of CCN3 that maintains the differentiated phenotype of articular cartilage. J Bone Miner Metab 35:582–597

    Article  CAS  PubMed  Google Scholar 

  • Kamimura T, Kimura M (2014) Meniscal repair of degenerative horizontal cleavage tears using fibrin clots: clinical and arthroscopic outcomes in 10 cases. Orthop J Sports Med 2:2325967114555678

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawaki H, Kubota S, Suzuki A, Lazar N, Yamada T, Matsumura T, Ohgawara T, Maeda T, Perbal B, Lyons KM, Takigawa M (2008) Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage. J Bone Miner Res 23:1751–1764

    Article  CAS  PubMed  Google Scholar 

  • Kawaki H, Kubota S, Takigawa M (2017) Western blotting analysis of CCN proteins in calcified tissues. Methods Mol Biol 1489:43–51

  • Kikuchi T, Kubota S, Asaumi K, Kawaki H, Nishida T, Kawata K, Mitani S, Tabata Y, Ozaki T, Takigawa M (2008) Promotion of bone regeneration by CCN2 incorporated into gelatin hydrogel. Tissue Eng A 14:1089–1098

    Article  CAS  Google Scholar 

  • Kubota S, Takigawa M (2011) The role of CCN2 in cartilage and bone development. J Cell Commun Signal 5:209–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubota S, Takigawa M (2013) The CCN family acting throughout the body: recent research developments. Biomol Concepts 4:477–494

    Article  CAS  PubMed  Google Scholar 

  • Kubota S, Kawata K, Yanagita T, Doi H, Kitoh T, Takigawa M (2004) Abundant retention and release of connective tissue growth factor (CTGF/CCN2) by platelets. J Biochem 136:279–282

    Article  CAS  PubMed  Google Scholar 

  • Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  CAS  Google Scholar 

  • Makris EA, Hadidi P, Athanasiou KA (2011) The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32:7411–7431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messner K, Gao J (1998) The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 193(Pt 2):161–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa Y, Muneta T, Kondo S, Mizuno M, Takakuda K, Ichinose S, Tabuchi T, Koga H, Tsuji K, Sekiya I (2015) Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs. Osteoarthr Cartil 23:1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Nepple JJ, Dunn WR, Wright RW (2012) Meniscal repair outcomes at greater than five years: a systematic literature review and meta-analysis. J Bone Joint Surg Am 94:2222–2227

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishida T, Kubota S, Kojima S, Kuboki T, Nakao K, Kushibiki T, Tabata Y, Takigawa M (2004) Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor). J Bone Miner Res 19:1308–1319

    Article  CAS  PubMed  Google Scholar 

  • Nishida T, Kubota S, Aoyama E, Yamanaka N, Lyons KM, Takigawa M (2017) Low-intensity pulsed ultrasound (LIPUS) treatment of cultured chondrocytes stimulates production of CCN family protein 2 (CCN2), a protein involved in the regeneration of articular cartilage: mechanism underlying this stimulation. Osteoarthr Cartil 25:759–769

    Article  CAS  PubMed  Google Scholar 

  • Oh CD, Yasuda H, Zhao W, Henry SP, Zhang Z, Xue M, de Crombrugghe B, Chen D (2016) SOX9 directly regulates CTGF/CCN2 transcription in growth plate chondrocytes and in nucleus pulposus cells of intervertebral disc. Sci Rep 6:29916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka M, Kubota S, Kondo S, Eguchi T, Kuroda C, Kawata K, Minagi S, Takigawa M (2007) Gene expression and distribution of connective tissue growth factor (CCN2/CTGF) during secondary ossification center formation. J Histochem Cytochem : Official Journal of The Histochemistry Society 55:1245–1255

    Article  CAS  Google Scholar 

  • Ozeki N, Muneta T, Matsuta S, Koga H, Nakagawa Y, Mizuno M, Tsuji K, Mabuchi Y, Akazawa C, Kobayashi E, Saito T, Sekiya I (2015) Synovial mesenchymal stem cells promote meniscus regeneration augmented by an autologous Achilles tendon graft in a rat partial meniscus defect model. Stem Cells 33:1927–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363:62–64

  • Perbal B, Takigawa M. 2005. CCN Proteins: A New Family of Cell Growth and Differentiaton Regulator

  • Ren L, Yang Z, Song J, Wang Z, Deng F, Li W (2013) Involvement of p38 MAPK pathway in low intensity pulsed ultrasound induced osteogenic differentiation of human periodontal ligament cells. Ultrasonics 53:686–690

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Nagata K, Kuroda S, Horiuchi S, Nakamura T, Karima M, Inubushi T, Tanaka E (2014) Low-intensity pulsed ultrasound activates integrin-mediated mechanotransduction pathway in synovial cells. Ann Biomed Eng 42:2156–2163

    Article  PubMed  Google Scholar 

  • Shibuya M (2001) Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct 26:25–35

    Article  CAS  PubMed  Google Scholar 

  • Shimo T, Nakanishi T, Nishida T, Asano M, Kanyama M, Kuboki T, Tamatani T, Tezuka K, Takemura M, Matsumura T, Takigawa M (1999) Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J Biochem 126:137–145

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi R, Masaki C, Toshinaga A, Okinaga T, Nishihara T, Yamanaka N, Nakamoto T, Hosokawa R (2011) The effects of low-intensity pulsed ultrasound exposure on gingival cells. J Periodontol 82:1498–1503

    Article  CAS  PubMed  Google Scholar 

  • Takigawa M (2003) CTGF/Hcs24 as a multifunctional growth factor for fibroblasts, chondrocytes and vascular endothelial cells. Drug News & Perspectives 16:11–21

    Article  CAS  Google Scholar 

  • Takigawa M (2013) CCN2: a master regulator of the genesis of bone and cartilage. J Cell Commun Signal 7:191–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Takigawa M (2018) An early history of CCN2/CTGF research: the road to CCN2 via hcs24, ctgf, ecogenin, and regenerin. J Cell Commun Signal 12:253–264

    Article  PubMed  Google Scholar 

  • Tanaka T, Fujii K, Kumagae Y (1999) Comparison of biochemical characteristics of cultured fibrochondrocytes isolated from the inner and outer regions of human meniscus. Knee Surg Sports Traumatol Arthrosc 7:75–80

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Muhammad H, McLean C, Miotla-Zarebska J, Fleming J, Didangelos A, Onnerfjord P, Leask A, Saklatvala J, Vincent TL (2018) Connective tissue growth factor contributes to joint homeostasis and osteoarthritis severity by controlling the matrix sequestration and activation of latent TGFbeta. Ann Rheum Dis 77:1372–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin SM, Richbourgh B, Ding Y, Hettinghouse A, Komatsu DE, Qin YX, Liu CJ (2016) Chondro-protective effects of low intensity pulsed ultrasound. Osteoarthr Cartil 24:1989–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voloshin AS, Wosk J (1983) Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J Biomed Eng 5:157–161

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li J, Qiu Y, Hu B, Chen J, Fu T, Zhou P, Song J (2018) Lowintensity pulsed ultrasound promotes periodontal ligament stem cell migration through TWIST1mediated SDF1 expression. Int J Mol Med 42:322–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng C, Li H, Yang T, Deng ZH, Yang Y, Zhang Y, Ding X, Lei GH (2014) Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis. Osteoarthr Cartil 22:1090–1099

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Yoshiko Miyake for her secretarial assistance. We also thank Masataka Fujii, Yuya Kodama, Tomohito Hino, Yoshiki Okazaki, Shin Masuda and Yuki Okazaki for their clinical supports.

Funding

This work was supported in part by grants from the programs Grants-in-Aid for Scientific Research (B) to MT (#JP15H05014), and for Challenging Exploratory Research to MT (#JP17K19757) from Japan Society for the Promotion of Sciences, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Takigawa.

Ethics declarations

Conflict of interest

NY is a managing director of Ito Co., Ltd.. and MT received research funding from this company. SM’s salary is supported by Teijin Nakashima Medical Co. Ltd. All other authors state that they have no conflicts of interest.

Ethical approval

This article does not contain any studies using human participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamatsuki, Y., Aoyama, E., Furumatsu, T. et al. Possible reparative effect of low-intensity pulsed ultrasound (LIPUS) on injured meniscus. J. Cell Commun. Signal. 13, 193–207 (2019). https://doi.org/10.1007/s12079-018-0496-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-018-0496-9

Keywords

Navigation