Skip to main content

Advertisement

Log in

Modeling of Autism Using Organoid Technology

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Autism is a neurodevelopmental disease caused by multiple mutations during development. However, a suitable disease model to study the molecular pathway of disease onset and progression is not available. Although many studies have used human stem cells such as induced pluripotent stem cells and embryonic stem cells to investigate the disease pathogenesis, these stem cell techniques are limited in their abilities to study the pathology and mechanism of pathogenesis of neurodevelopmental diseases such as autism. Therefore, researchers are focusing on the strengths of three-dimensional (3D) structures mimicking organs, organoids, for modeling autism. In this review, we highlight the advantages of 3D organoid systems to investigate the mechanisms of the pathogenesis of autism. Further, because the onset of autism is determined by genetic background, we suggest the application of the clustered regularly interspersed short palindromic repeat-associated protein 9 (CRISPR/Cas9) technique for genome editing in 3D organoid systems to study mutations that cause autism. We propose that 3D organoid systems combined with the CRISPR/Cas9 technique may advance autism research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Orlacchio A et al (2010) Stem cells: an overview of the current status of therapies for central and peripheral nervous system diseases. Curr Med Chem 17(7):595–608

    Article  CAS  PubMed  Google Scholar 

  2. Martelli MF et al (2014) HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood 124(4):638–644

    Article  CAS  PubMed  Google Scholar 

  3. Bethge WA et al (2008) Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: an update. Blood Cells Mol Dis 40(1):13–19

    Article  CAS  PubMed  Google Scholar 

  4. Simsek, S., et al. 2016, Modeling cystic fibrosis using pluripotent stem cell-derived human pancreatic ductal epithelial cells. Stem Cells Transl Med

  5. Qin M et al (2016) Direct reprogramming of human amniotic fluid stem cells by OCT4 and application in repairing of cerebral ischemia damage. Int J Biol Sci 12(5):558–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dutta RC, Dutta AK (2009) Cell-interactive 3D-scaffold; advances and applications. Biotechnol Adv 27(4):334–339

    Article  CAS  PubMed  Google Scholar 

  7. Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brito C et al (2012) 3D cultures of human neural progenitor cells: dopaminergic differentiation and genetic modification. [corrected]. Methods 56(3):452–460

    Article  CAS  PubMed  Google Scholar 

  10. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345(6194):1247125

    Article  PubMed  CAS  Google Scholar 

  11. Yin X et al (2014) Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods 11(1):106–112

    Article  CAS  PubMed  Google Scholar 

  12. Takasato M et al (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16(1):118–126

    Article  CAS  PubMed  Google Scholar 

  13. Lancaster MA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

    Article  CAS  PubMed  Google Scholar 

  14. Mondrinos MJ et al (2014) Engineering de novo assembly of fetal pulmonary organoids. Tissue Eng Part A 20(21–22):2892–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mariani J et al (2015) FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162(2):375–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383(9920):896–910

    Article  PubMed  Google Scholar 

  17. Visser JC et al (2016) Autism spectrum disorder and attention-deficit/hyperactivity disorder in early childhood: a review of unique and shared characteristics and developmental antecedents. Neurosci Biobehav Rev 65:229–263

  18. Mazurek MO et al (2013) Anxiety, sensory over-responsivity, and gastrointestinal problems in children with autism spectrum disorders. J Abnorm Child Psychol 41(1):165–176

    Article  PubMed  Google Scholar 

  19. Christensen DL et al (2016) Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveill Summ 65(3):1–23

    Article  PubMed  Google Scholar 

  20. Gaugler T et al (2014) Most genetic risk for autism resides with common variation. Nat Genet 46(8):881–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klei L et al (2012) Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism 3(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18(3):246–254

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  24. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  25. Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12(5):520–530

    Article  CAS  PubMed  Google Scholar 

  26. Sato T et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265

    Article  CAS  PubMed  Google Scholar 

  27. Eiraku M et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472(7341):51–56

    Article  CAS  PubMed  Google Scholar 

  28. Suga H et al (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480(7375):57–62

    Article  CAS  PubMed  Google Scholar 

  29. Sato T et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5):1762–1772

    Article  CAS  PubMed  Google Scholar 

  30. Takebe T et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499(7459):481–484

    Article  CAS  PubMed  Google Scholar 

  31. Schlaermann P et al (2016) A novel human gastric primary cell culture system for modelling helicobacter pylori infection in vitro. Gut 65(2):202–213

    Article  CAS  PubMed  Google Scholar 

  32. Bartfeld S et al (2015) In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148(1):126–136 e6

    Article  PubMed  Google Scholar 

  33. Huch M et al (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160(1–2):299–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sampaziotis F et al (2015) Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol 33(8):845–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ogawa M et al (2015) Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol 33(8):853–861

    Article  CAS  PubMed  Google Scholar 

  36. Takasato M et al (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526(7574):564–568

    Article  CAS  PubMed  Google Scholar 

  37. Eiraku M et al (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3(5):519–532

    Article  CAS  PubMed  Google Scholar 

  38. Gaspard N et al (2008) An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455(7211):351–357

    Article  CAS  PubMed  Google Scholar 

  39. Mariani J et al (2012) Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci U S A 109(31):12770–12775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Evans M (2011) Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat Rev Mol Cell Biol 12(10):680–686

    Article  CAS  PubMed  Google Scholar 

  41. Xia X, Zhang SC (2009) Differentiation of neuroepithelia from human embryonic stem cells. Methods Mol Biol 549:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weitzer G (2006) Embryonic stem cell-derived embryoid bodies: an in vitro model of eutherian pregastrulation development and early gastrulation. Handb Exp Pharmacol 174:21–51

    Google Scholar 

  43. Nakano T et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10(6):771–785

    Article  CAS  PubMed  Google Scholar 

  44. Watanabe K et al (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8(3):288–296

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe K et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686

    Article  CAS  PubMed  Google Scholar 

  46. Cyranoski D (2012) Tissue engineering: the brainmaker. Nature 488(7412):444–446

    Article  CAS  PubMed  Google Scholar 

  47. Danjo T et al (2011) Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. J Neurosci 31(5):1919–1933

    Article  CAS  PubMed  Google Scholar 

  48. Su HL et al (2006) Generation of cerebellar neuron precursors from embryonic stem cells. Dev Biol 290(2):287–296

    Article  CAS  PubMed  Google Scholar 

  49. Muguruma K et al (2010) Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat Neurosci 13(10):1171–1180

    Article  CAS  PubMed  Google Scholar 

  50. Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9(10):2329–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fombonne E (2009) Epidemiology of pervasive developmental disorders. Pediatr Res 65(6):591–598

    Article  PubMed  Google Scholar 

  52. Elsabbagh M et al (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5(3):160–179

    Article  PubMed  PubMed Central  Google Scholar 

  53. Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17(1):103–111

    Article  CAS  PubMed  Google Scholar 

  54. Barger BD, Campbell JM, McDonough JD (2013) Prevalence and onset of regression within autism spectrum disorders: a meta-analytic review. J Autism Dev Disord 43(4):817–828

    Article  PubMed  Google Scholar 

  55. Robinson EB et al (2011) Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5%, 2.5%, and 1%). Arch Gen Psychiatry 68(11):1113–1121

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lundstrom S et al (2012) Autism spectrum disorders and autistic like traits: similar etiology in the extreme end and the normal variation. Arch Gen Psychiatry 69(1):46–52

    Article  PubMed  Google Scholar 

  57. Ronald A et al (2006) Genetic heterogeneity between the three components of the autism spectrum: a twin study. J Am Acad Child Adolesc Psychiatry 45(6):691–699

    Article  PubMed  Google Scholar 

  58. Hallmayer J et al (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102

    Article  PubMed  PubMed Central  Google Scholar 

  59. De Rubeis S, Buxbaum JD (2015) Genetics and genomics of autism spectrum disorder: embracing complexity. Hum Mol Genet 24(R1):R24–R31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9(5):341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang YH et al (2013) Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet 93(2):249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Iossifov I et al (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515(7526):216–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sutcliffe JS et al (2005) Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am J Hum Genet 77(2):265–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ma DQ et al (2010) Association and gene-gene interaction of SLC6A4 and ITGB3 in autism. Am J Med Genet B Neuropsychiatr Genet 153B(2):477–483

    Article  CAS  PubMed  Google Scholar 

  65. Rudie JD et al (2012) Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron 75(5):904–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang SY et al (2010) Family-based association study of microsatellites in the 5’ flanking region of AVPR1A with autism spectrum disorder in the Korean population. Psychiatry Res 178(1):199–201

    Article  CAS  PubMed  Google Scholar 

  67. Yamasue H (2016) Promising evidence and remaining issues regarding the clinical application of oxytocin in autism spectrum disorders. Psychiatry Clin Neurosci 70(2):89–99

    Article  PubMed  Google Scholar 

  68. Persico AM, Napolioni V (2013) Autism genetics. Behav Brain Res 251:95–112

    Article  PubMed  Google Scholar 

  69. Wang L et al (2008) Association of the ENGRAILED 2 (EN2) gene with autism in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet 147B(4):434–438

    Article  CAS  PubMed  Google Scholar 

  70. Lee EJ, Choi SY, Kim E (2015) NMDA receptor dysfunction in autism spectrum disorders. Curr Opin Pharmacol 20:8–13

    Article  CAS  PubMed  Google Scholar 

  71. Yoo HJ et al (2012) Family based association of GRIN2A and GRIN2B with Korean autism spectrum disorders. Neurosci Lett 512(2):89–93

    Article  CAS  PubMed  Google Scholar 

  72. Skaar DA et al (2005) Analysis of the RELN gene as a genetic risk factor for autism. Mol Psychiatry 10(6):563–571

    Article  CAS  PubMed  Google Scholar 

  73. Buxbaum JD et al (2002) Association between a GABRB3 polymorphism and autism. Mol Psychiatry 7(3):311–316

    Article  CAS  PubMed  Google Scholar 

  74. Kim SA et al (2006) Association of GABRB3 polymorphisms with autism spectrum disorders in Korean trios. Neuropsychobiology 54(3):160–165

    Article  CAS  PubMed  Google Scholar 

  75. Anney R et al (2010) A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet 19(20):4072–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Connolly JJ, Glessner JT, Hakonarson H (2013) A genome-wide association study of autism incorporating autism diagnostic interview-revised, autism diagnostic observation schedule, and social responsiveness scale. Child Dev 84(1):17–33

    Article  PubMed  Google Scholar 

  77. Stolerman ES et al (2016) CHD8 intragenic deletion associated with autism spectrum disorder. Eur J Med Genet 59(4):189–194

    Article  PubMed  Google Scholar 

  78. Chaste P et al (2015) A genome-wide association study of autism using the Simons simplex collection: does reducing phenotypic heterogeneity in autism increase genetic homogeneity? Biol Psychiatry 77(9):775–784

    Article  PubMed  Google Scholar 

  79. Liu X et al (2016) Genome-wide association study of autism spectrum disorder in the east Asian populations. Autism Res 9(3):340–349

    Article  PubMed  Google Scholar 

  80. Banerjee S, Riordan M, Bhat MA (2014) Genetic aspects of autism spectrum disorders: insights from animal models. Front Cell Neurosci 8:58

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chen J et al (2014) Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci 8:276

    PubMed  PubMed Central  Google Scholar 

  82. Zoghbi HY, Bear MF (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 4(3). doi:10.1101/cshperspect.a009886

  83. Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493(7432):327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Neuhofer D et al (2015) Functional and structural deficits at accumbens synapses in a mouse model of fragile X. Front Cell Neurosci 9:100

    Article  PubMed  PubMed Central  Google Scholar 

  85. Doll CA, Broadie K (2014) Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. Front Cell Neurosci 8:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Port RG et al (2014) Convergence of circuit dysfunction in ASD: a common bridge between diverse genetic and environmental risk factors and common clinical electrophysiology. Front Cell Neurosci 8:414

    Article  PubMed  PubMed Central  Google Scholar 

  87. Willsey AJ et al (2013) Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155(5):997–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Amenduni M et al (2011) iPS cells to model CDKL5-related disorders. Eur J Hum Genet 19(12):1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Marchetto MC et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Urbach A et al (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6(5):407–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sheridan SD et al (2011) Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One 6(10):e26203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kyttala A et al (2016) Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Reports 6(2):200–212

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mills JA et al (2013) Clonal genetic and hematopoietic heterogeneity among human-induced pluripotent stem cell lines. Blood 122(12):2047–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Butler MG et al (2005) Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet 42(4):318–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bourguignon C, Li J, Papalopulu N (1998) XBF-1, a winged helix transcription factor with dual activity, has a role in positioning neurogenesis in Xenopus competent ectoderm. Development 125(24):4889–4900

    CAS  PubMed  Google Scholar 

  96. Schwank G et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13(6):653–658

    Article  CAS  PubMed  Google Scholar 

  97. McCracken KW et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516(7531):400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lugo JN et al (2014) Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins. Front Mol Neurosci 7:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Tilot AK, Frazier TW 2nd, Eng C (2015) Balancing proliferation and connectivity in PTEN-associated autism spectrum disorder. Neurotherapeutics 12(3):609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Amiri A et al (2012) Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci 32(17):5880–5890

    Article  CAS  PubMed  Google Scholar 

  101. Rogers JT et al (2011) Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learn Mem 18(9):558–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang Z et al (2014) Reelin gene variants and risk of autism spectrum disorders: an integrated meta-analysis. Am J Med Genet B Neuropsychiatr Genet 165B(2):192–200

    Article  PubMed  CAS  Google Scholar 

  103. Bailey A et al (1998) A clinicopathological study of autism. Brain 121(Pt 5):889–905

    Article  PubMed  Google Scholar 

  104. Nguyen A et al (2010) Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J 24(8):3036–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhu L et al (2014) Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum Mol Genet 23(6):1563–1578

    Article  PubMed  CAS  Google Scholar 

  106. Qin J et al (2009) Association study of SHANK3 gene polymorphisms with autism in Chinese Han population. BMC Med Genet 10:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Talebizadeh Z et al (2004) Do known mutations in neuroligin genes (NLGN3 and NLGN4) cause autism? J Autism Dev Disord 34(6):735–736

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jamain S et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Arden KC (2004) FoxO: linking new signaling pathways. Mol Cell 14(4):416–418

    Article  CAS  PubMed  Google Scholar 

  110. Seoane J et al (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117(2):211–223

    Article  CAS  PubMed  Google Scholar 

  111. Yao J, Lai E, Stifani S (2001) The winged-helix protein brain factor 1 interacts with groucho and hes proteins to repress transcription. Mol Cell Biol 21(6):1962–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Martynoga B et al (2005) Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev Biol 283(1):113–127

    Article  CAS  PubMed  Google Scholar 

  113. Yang Y et al (2015) Impaired interneuron development after Foxg1 disruption. Cereb Cortex. doi:10.1093/cercor/bhv297

  114. Roche-Martinez A et al (2011) FOXG1, a new gene responsible for the congenital form of Rett syndrome. Rev Neurol 52(10):597–602

    CAS  PubMed  Google Scholar 

  115. Striano P et al (2011) West syndrome associated with 14q12 duplications harboring FOXG1. Neurology 76(18):1600–1602

    Article  CAS  PubMed  Google Scholar 

  116. Nageshappa S et al (2016) Altered neuronal network and rescue in a human MECP2 duplication model. Mol Psychiatry 21(2):178–188

    Article  CAS  PubMed  Google Scholar 

  117. Vogel G (2013) Neurodevelopment. Lab dishes up mini-brains. Science 341(6149):946–947

    Article  CAS  PubMed  Google Scholar 

  118. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  Google Scholar 

  119. Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ran FA et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Barrangou R et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  122. Wang T et al (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84

    Article  CAS  PubMed  Google Scholar 

  123. Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16(5):299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kan Y et al (2014) The mechanism of gene targeting in human somatic cells. PLoS Genet 10(4):e1004251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Elliott B et al (1998) Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol 18(1):93–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Baum C et al (2004) Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 9(1):5–13

    Article  CAS  PubMed  Google Scholar 

  127. Musunuru K (2013) Genome editing of human pluripotent stem cells to generate human cellular disease models. Dis Model Mech 6(4):896–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Grobarczyk B et al (2015) Generation of isogenic human iPS cell line precisely corrected by genome editing using the CRISPR/Cas9 system. Stem Cell Rev 11(5):774–787

    Article  CAS  PubMed  Google Scholar 

  129. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xie F et al (2014) Seamless gene correction of beta-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 24(9):1526–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Su S et al (2016) CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 6:20070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Young CS et al (2016) A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 18(4):533–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Park CY et al (2015) Functional correction of large factor VIII gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17(2):213–220

    Article  CAS  PubMed  Google Scholar 

  134. Mungenast AE, Siegert S, Tsai LH (2015) Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells. Mol Cell Neurosci 73:13–31. doi:10.1016/j.mcn.2015.11.010

  135. Matano M et al (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21(3):256–262

    CAS  PubMed  Google Scholar 

  136. Freedman BS et al (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6:8715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Drost J et al (2015) Sequential cancer mutations in cultured human intestinal stem cells. Nature 521(7550):43–47

    Article  CAS  PubMed  Google Scholar 

  138. Li X et al (2014) Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med 20(7):769–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Boj SF et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1–2):324–338

    Article  CAS  PubMed  Google Scholar 

  140. Iafrati J et al (2014) Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway. Mol Psychiatry 19(4):417–426

    Article  CAS  PubMed  Google Scholar 

  141. Gonzalez F (2016) CRISPR/Cas9 genome editing in human pluripotent stem cells: harnessing human genetics in a dish. Dev Dyn 245(7):788–806

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Health Technology R&D Project, Ministry of Health and Welfare (HI16C1176).

Author Contributions

Choi Hwan and Juhyun Song wrote the preliminary draft and revised details of the manuscript. Guiyeon Park drew the figure. Jongpil Kim revised all manuscript in detail.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongpil Kim.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Hwan Choi and Juhyun Song are equally contributed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Song, J., Park, G. et al. Modeling of Autism Using Organoid Technology. Mol Neurobiol 54, 7789–7795 (2017). https://doi.org/10.1007/s12035-016-0274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0274-8

Keywords

Navigation