Skip to main content
Log in

Minocycline Protects Against NLRP3 Inflammasome-Induced Inflammation and P53-Associated Apoptosis in Early Brain Injury After Subarachnoid Hemorrhage

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Minocycline has beneficial effects in early brain injury (EBI) following subarachnoid hemorrhage (SAH); however, the molecular mechanisms underlying these effects have not been clearly identified. This study was undertaken to determine the influence of minocycline on inflammation and neural apoptosis and the possible mechanisms of these effects in early brain injury following subarachnoid hemorrhage. SAH was induced by the filament perforation model of SAH in male Sprague–Dawley rats. Minocycline or vehicle was given via an intraperitoneal injection 1 h after SAH induction. Minocycline treatment markedly attenuated brain edema secondary to blood-brain barrier (BBB) dysfunction by inhibiting NLRP3 inflammasome activation, which controls the maturation and release of pro-inflammatory cytokines, especially interleukin-1β (IL-1β). Minocycline treatment also markedly reduced the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive cells. To further identify the potential mechanisms, we demonstrated that minocycline increased Bcl2 expression and reduced the protein expression of P53, Bax, and cleaved caspase-3. In addition, minocycline reduced the cortical levels of reactive oxygen species (ROS), which are closely related to both NLRP3 inflammasome and P53 expression. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury following SAH. Minocycline’s anti-inflammatory and anti-apoptotic effect may involve the reduction of ROS. Minocycline treatment may exhibit important clinical potentials in the management of SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ho HW, Batjer HH (1997) Aneurysmal subarachnoid hemorrhage: pathophysiology and sequelae. Cerebrovascular disease. Lippincott-Raven Publishers, Philadelphia

    Google Scholar 

  2. Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97(1):14–37. doi:10.1016/j.pneurobio.2012.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  3. Caner B, Hou J, Altay O, Fujii M, Zhang JH (2012) Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem 123:12–21. doi:10.1111/j.1471-4159.2012.07939.x

    Article  CAS  PubMed  Google Scholar 

  4. Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J et al (2014) Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 115C:64–91. doi:10.1016/j.pneurobio.2013.09.002

    Article  Google Scholar 

  5. Dumont AS, Dumont RJ, Chow MM, Lin CL, Calisaneller T, Ley KF, Kassell NF, Lee KS (2003) Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery 53(1):123–133, discussion 133-125

    Article  PubMed  Google Scholar 

  6. Maddahi A, Povlsen GK, Edvinsson L (2012) Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. J Neuroinflammation 9:274. doi:10.1186/1742-2094-9-274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. You WC, Wang CX, Pan YX, Zhang X, Zhou XM, Zhang XS, Shi JX, Zhou ML (2013) Activation of nuclear factor-kappaB in the brain after experimental subarachnoid hemorrhage and its potential role in delayed brain injury. PLoS One 8(3), e60290. doi:10.1371/journal.pone.0060290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Z, Wu L, You W, Ji C, Chen G (2013) Melatonin alleviates secondary brain damage and neurobehavioral dysfunction after experimental subarachnoid hemorrhage: possible involvement of TLR4-mediated inflammatory pathway. J Pineal Res 55(4):399–408. doi:10.1111/jpi.12087

    CAS  PubMed  Google Scholar 

  9. Chen S, Ma Q, Krafft PR, Hu Q, Rolland W II, Sherchan P, Zhang J, Tang J et al (2013) P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiol Dis 58:296–307. doi:10.1016/j.nbd.2013.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ostrowski RP, Colohan AR, Zhang JH (2006) Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 28(4):399–414. doi:10.1179/016164106x115008

    Article  CAS  PubMed  Google Scholar 

  11. Hasegawa Y, Suzuki H, Sozen T, Altay O, Zhang JH (2011) Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl 110(Pt 1):43–48. doi:10.1007/978-3-7091-0353-1_8

    PubMed  Google Scholar 

  12. Cahill J, Calvert JW, Solaroglu I, Zhang JH (2006) Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage. Stroke 37(7):1868–1874. doi:10.1161/01.str.0000226995.27230.96

    Article  PubMed  Google Scholar 

  13. Zhou C, Yamaguchi M, Colohan AR, Zhang JH (2005) Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 25(5):572–582. doi:10.1038/sj.jcbfm.9600069

    Article  CAS  PubMed  Google Scholar 

  14. Cahill J, Calvert JW, Marcantonio S, Zhang JH (2007) p53 may play an orchestrating role in apoptotic cell death after experimental subarachnoid hemorrhage. Neurosurgery 60(3):531–545. doi:10.1227/01.neu.0000249287.99878.9b, discussion 545

    Article  PubMed  Google Scholar 

  15. Cahill J, Calvert JW, Zhang JH (2006) Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26(11):1341–1353. doi:10.1038/sj.jcbfm.9600283

    Article  CAS  PubMed  Google Scholar 

  16. Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J (2014) NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol 75(2):209–219. doi:10.1002/ana.24070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20(1):1–15. doi:10.1101/gad.1376506

    Article  CAS  PubMed  Google Scholar 

  18. Garrido-Mesa N, Zarzuelo A, Galvez J (2013) Minocycline: far beyond an antibiotic. Br J Pharmacol 169(2):337–352. doi:10.1111/bph.12139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koistinaho M, Malm TM, Kettunen MI, Goldsteins G, Starckx S, Kauppinen RA, Opdenakker G, Koistinaho J (2005) Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab 25(4):460–467. doi:10.1038/sj.jcbfm.9600040

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez Mejia RO, Ona VO, Li M, Friedlander RM (2001) Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery 48(6):1393–1399, discussion 1399-1401

    CAS  PubMed  Google Scholar 

  21. Abdel-Salam OM (2008) Drugs used to treat Parkinson's disease, present status and future directions. CNS Neurol Disord Drug Targets 7(4):321–342

    Article  CAS  PubMed  Google Scholar 

  22. Guo ZD, Wu HT, Sun XC, Zhang XD, Zhang JH (2011) Protection of minocycline on early brain injury after subarachnoid hemorrhage in rats. Acta Neurochir Suppl 110(Pt 1):71–74. doi:10.1007/978-3-7091-0353-1_13

    PubMed  Google Scholar 

  23. Sherchan P, Lekic T, Suzuki H, Hasegawa Y, Rolland W, Duris K, Zhan Y, Tang J et al (2011) Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats. J Neurotrauma 28(12):2503–2512. doi:10.1089/neu.2011.1864

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen J, Wang L, Wu C, Hu Q, Gu C, Yan F, Li J, Yan W et al (2014) Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J Pineal Res 56(1):12–19. doi:10.1111/jpi.12086

    Article  CAS  PubMed  Google Scholar 

  25. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4):627–634, discussion 635

    Article  CAS  PubMed  Google Scholar 

  26. Sugawara T, Ayer R, Jadhav V, Zhang JH (2008) A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 167(2):327–334. doi:10.1016/j.jneumeth.2007.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  27. Topkoru BC, Altay O, Duris K, Krafft PR, Yan J, Zhang JH (2013) Nasal administration of recombinant osteopontin attenuates early brain injury after subarachnoid hemorrhage. Stroke 44(11):3189–3194. doi:10.1161/strokeaha.113.001574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan F, Hu Q, Chen J, Wu C, Gu C, Chen G (2013) Progesterone attenuates early brain injury after subarachnoid hemorrhage in rats. Neurosci Lett 543:163–167. doi:10.1016/j.neulet.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  29. Zetterling M, Hallberg L, Hillered L, Karlsson T, Enblad P, Ronne Engstrom E (2010) Brain energy metabolism in patients with spontaneous subarachnoid hemorrhage and global cerebral edema. Neurosurgery 66(6):1102–1110. doi:10.1227/01.neu.0000370893.04586.73

    Article  PubMed  Google Scholar 

  30. Altay O, Suzuki H, Hasegawa Y, Caner B, Krafft PR, Fujii M, Tang J, Zhang JH (2012) Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke 43(9):2513–2516. doi:10.1161/strokeaha.112.661728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA (2002) Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke 33(5):1225–1232

    Article  PubMed  Google Scholar 

  32. Li Z, Liang G, Ma T, Li J, Wang P, Liu L, Yu B, Liu Y et al (2014) Blood-brain barrier permeability change and regulation mechanism after subarachnoid hemorrhage. Metab Brain Dis. doi:10.1007/s11011-014-9609-1

    PubMed Central  Google Scholar 

  33. Sehba FA, Mostafa G, Knopman J, Friedrich V, Bederson JB (2004) Acute alterations in microvascular basal lamina after subarachnoid hemorrhage. J Neurosurg 101(4):633–640. doi:10.3171/jns.2004.101.4.0633

    Article  PubMed  Google Scholar 

  34. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 21(19):7724–7732

    CAS  PubMed  Google Scholar 

  35. Bauer AT, Burgers HF, Rabie T, Marti HH (2010) Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab 30(4):837–848. doi:10.1038/jcbfm.2009.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa S, Zhang JH (2009) Role of interleukin-1 beta in early brain injury after subarachnoid hemorrhage in mice. Stroke 40(7):2519–2525. doi:10.1161/strokeaha.109.549592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H et al (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4, e525. doi:10.1038/cddis.2013.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jha S, Srivastava SY, Brickey WJ, Iocca H, Toews A, Morrison JP, Chen VS, Gris D et al (2010) The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J Neurosci 30(47):15811–15820. doi:10.1523/jneurosci.4088-10.2010

    Article  CAS  PubMed  Google Scholar 

  39. Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M, Yu G, Kaneko Y, Ojika K et al (2009) Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci 10:126. doi:10.1186/1471-2202-10-126

    Article  PubMed  PubMed Central  Google Scholar 

  40. Choi Y, Kim HS, Shin KY, Kim EM, Kim M, Park CH, Jeong YH, Yoo J et al (2007) Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer's disease models. Neuropsychopharmacology 32(11):2393–2404. doi:10.1038/sj.npp.1301377

    Article  CAS  PubMed  Google Scholar 

  41. Leker RR, Aharonowiz M, Greig NH, Ovadia H (2004) The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin alpha. Exp Neurol 187(2):478–486. doi:10.1016/j.expneurol.2004.01.030

    Article  CAS  PubMed  Google Scholar 

  42. Mendelow AD (1988) Pathophysiology of delayed ischaemic dysfunction after subarachnoid haemorrhage: experimental and clinical data. Acta Neurochir Suppl (Wien) 45:7–10

    Article  CAS  Google Scholar 

  43. Antonsson B, Martinou JC (2000) The Bcl-2 protein family. Exp Cell Res 256(1):50–57. doi:10.1006/excr.2000.4839

    Article  CAS  PubMed  Google Scholar 

  44. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC et al (1999) Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144(2):281–292. doi:10.1083/jcb.144.2.281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng Y, Xu L, Yin J, Zhong Z, Fan H, Li X, Chang Q (2013) Effect of minocycline on cerebral ischemia-reperfusion injury. Neural Regen Res 8(10):900–908. doi:10.3969/j.issn.1673-5374.2013.10.004

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hayakawa K, Mishima K, Nozako M, Hazekawa M, Mishima S, Fujioka M, Orito K, Egashira N et al (2008) Delayed treatment with minocycline ameliorates neurologic impairment through activated microglia expressing a high-mobility group box1-inhibiting mechanism. Stroke 39(3):951–958. doi:10.1161/strokeaha.107.495820

    Article  CAS  PubMed  Google Scholar 

  47. Machado LS, Kozak A, Ergul A, Hess DC, Borlongan CV, Fagan SC (2006) Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 7:56. doi:10.1186/1471-2202-7-56

    Article  PubMed  PubMed Central  Google Scholar 

  48. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. doi:10.1038/nrn2038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Scientific and Technological Project of Zhejiang Province (2013C33138) and the Qianjiang rencai project (2013R10029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao Chen.

Additional information

Jianru Li, Jingsen Chen and Hangbo Mo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, J., Mo, H. et al. Minocycline Protects Against NLRP3 Inflammasome-Induced Inflammation and P53-Associated Apoptosis in Early Brain Injury After Subarachnoid Hemorrhage. Mol Neurobiol 53, 2668–2678 (2016). https://doi.org/10.1007/s12035-015-9318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9318-8

Keywords

Navigation