Skip to main content

Advertisement

Log in

The Role of TDP-43 in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The transactive response DNA binding protein (TDP-43) has long been characterized as a main hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U, also known as FTLD-TDP). Several studies have indicated TDP-43 deposits in Alzheimer’s disease (AD) brains and have robust connection with AD clinical phenotype. FTLD-U, which was symptomatically connected with AD, may be predictable for the comprehension of the role TDP-43 in AD. TDP-43 may contribute to AD through both β-amyloid (Aβ)-dependent and Aβ-independent pathways. In this article, we summarize the latest studies concerning the role of TDP-43 in AD and explore TDP-43 modulation as a potential therapeutic strategy for AD. However, to date, little of pieces of the research on TDP-43 have been performed to investigate the role in AD; more investigations need to be confirmed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hoyert DL, Xu J (2012) Deaths: preliminary data for 2011. Natl Vital Stat Rep 61(6):1–51

    PubMed  Google Scholar 

  2. De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV (2012) Alzheimer’s disease. Subcell Biochem 65:329–352. doi:10.1007/978-94-007-5416-4_14

    Article  CAS  PubMed  Google Scholar 

  3. Rayaprolu S, Fujioka S, Traynor S, Soto-Ortolaza AI, Petrucelli L, Dickson DW, Rademakers R, Boylan KB et al (2013) TARDBP mutations in Parkinson’s disease. Parkinsonism Relat Disord 19(3):312–315. doi:10.1016/j.parkreldis.2012.11.003

    Article  PubMed  Google Scholar 

  4. Chanson JB, Echaniz-Laguna A, Vogel T, Mohr M, Benoilid A, Kaltenbach G, Kiesmann M (2010) TDP43-positive intraneuronal inclusions in a patient with motor neuron disease and Parkinson’s disease. Neurodegener Dis 7(4):260–264. doi:10.1159/000273591

    Article  PubMed  Google Scholar 

  5. Rohn TT (2008) Caspase-cleaved TAR DNA-binding protein-43 is a major pathological finding in Alzheimer’s disease. Brain Res 1228:189–198. doi:10.1016/j.brainres.2008.06.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Davis MY, Keene CD, Jayadev S, Bird T (2014) The co-occurrence of Alzheimer’s disease and Huntington’s disease: a neuropathological study of 15 elderly Huntington’s disease subjects. J Huntingtons Dis 3(2):209–217. doi:10.3233/JHD-140111

    CAS  PubMed  Google Scholar 

  7. Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878

    Article  CAS  PubMed  Google Scholar 

  8. Higashi S, Kabuta T, Nagai Y, Tsuchiya Y, Akiyama H, Wada K (2013) TDP-43 associates with stalled ribosomes and contributes to cell survival during cellular stress. J Neurochem 126(2):288–300. doi:10.1111/jnc.12194

    Article  CAS  PubMed  Google Scholar 

  9. Austin JA, Wright GS, Watanabe S, Grossmann JG, Antonyuk SV, Yamanaka K, Hasnain SS (2014) Disease causing mutants of TDP-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half-life. Proc Natl Acad Sci U S A 111(11):4309–4314. doi:10.1073/pnas.1317317111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brouwers N, Bettens K, Gijselinck I, Engelborghs S, Pickut BA, Van Miegroet H, Montoya AG, Mattheijssens M et al (2010) Contribution of TARDBP to Alzheimer’s disease genetic etiology. J Alzheimers Dis 21(2):423–430. doi:10.3233/JAD-2010-100198

    Article  CAS  PubMed  Google Scholar 

  11. Vanden Broeck L, Kleinberger G, Chapuis J, Gistelinck M, Amouyel P, Van Broeckhoven C, Lambert JC, Callaerts P et al (2015) Functional complementation in Drosophila to predict the pathogenicity of TARDBP variants: evidence for a loss-of-function mechanism. Neurobiol Aging 36(2):1121–1129. doi:10.1016/j.neurobiolaging.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  12. Ticozzi N, LeClerc AL, van Blitterswijk M, Keagle P, McKenna-Yasek DM, Sapp PC, Silani V, Wills AM et al (2011) Mutational analysis of TARDBP in neurodegenerative diseases. Neurobiol Aging 32(11):2096–2099. doi:10.1016/j.neurobiolaging.2009.11.018

    Article  CAS  PubMed  Google Scholar 

  13. Gendron TF, Rademakers R, Petrucelli L (2013) TARDBP mutation analysis in TDP-43 proteinopathies and deciphering the toxicity of mutant TDP-43. J Alzheimers Dis 33(Suppl 1):S35–45. doi:10.3233/JAD-2012-129036

    PubMed  PubMed Central  Google Scholar 

  14. Lauranzano E, Pozzi S, Pasetto L, Stucchi R, Massignan T, Paolella K, Mombrini M, Nardo G et al (2015) Peptidylprolyl isomerase A governs TARDBP function and assembly in heterogeneous nuclear ribonucleoprotein complexes. Brain 138(Pt 4):974–991. doi:10.1093/brain/awv005

    Article  PubMed  Google Scholar 

  15. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442(7105):916–919. doi:10.1038/nature05016

    Article  CAS  PubMed  Google Scholar 

  16. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36(4):377–381. doi:10.1038/ng1332

    Article  CAS  PubMed  Google Scholar 

  17. McGurk L, Lee VM, Trojanowksi JQ, Van Deerlin VM, Lee EB, Bonini NM (2014) Poly-A binding protein-1 localization to a subset of TDP-43 inclusions in amyotrophic lateral sclerosis occurs more frequently in patients harboring an expansion in C9orf72. J Neuropathol Exp Neurol 73(9):837–845. doi:10.1097/NEN.0000000000000102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Devlin AC, Burr K, Borooah S, Foster JD, Cleary EM, Geti I, Vallier L, Shaw CE et al (2015) Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. Nat Commun 6:5999. doi:10.1038/ncomms6999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buratti E, Brindisi A, Pagani F, Baralle FE (2004) Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. Am J Hum Genet 74(6):1322–1325. doi:10.1086/420978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang YJ, Caulfield T, Xu YF, Gendron TF, Hubbard J, Stetler C, Sasaguri H, Whitelaw EC et al (2013) The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum Mol Genet 22(15):3112–3122. doi:10.1093/hmg/ddt166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuo PH, Chiang CH, Wang YT, Doudeva LG, Yuan HS (2014) The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids. Nucleic Acids Res 42(7):4712–4722. doi:10.1093/nar/gkt1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pesiridis GS, Lee VM, Trojanowski JQ (2009) Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet 18(R2):R156–162. doi:10.1093/hmg/ddp303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D’Ambrogio A, Buratti E, Stuani C, Guarnaccia C, Romano M, Ayala YM, Baralle FE (2009) Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res 37(12):4116–4126. doi:10.1093/nar/gkp342

    Article  PubMed  PubMed Central  Google Scholar 

  24. Romano M, Buratti E, Romano G, Klima R, Del Bel Belluz L, Stuani C, Baralle F, Feiguin F (2014) Evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins functionally interact with human and Drosophila TAR DNA-binding protein 43 (TDP-43). J Biol Chem 289(10):7121–7130. doi:10.1074/jbc.M114.548859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang CC, Bose JK, Majumder P, Lee KH, Huang JT, Huang JK, Shen CK (2014) Metabolism and mis-metabolism of the neuropathological signature protein TDP-43. J Cell Sci 127(Pt 14):3024–3038. doi:10.1242/jcs.136150

    Article  CAS  PubMed  Google Scholar 

  26. Igaz LM, Kwong LK, Chen-Plotkin A, Winton MJ, Unger TL, Xu Y, Neumann M, Trojanowski JQ et al (2009) Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J Biol Chem 284(13):8516–8524. doi:10.1074/jbc.M809462200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu YF, Gendron TF, Zhang YJ, Lin WL, D’Alton S, Sheng H, Casey MC, Tong J et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30(32):10851–10859. doi:10.1523/JNEUROSCI.1630-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 106(44):18809–18814. doi:10.1073/pnas.0908767106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vanden Broeck L, Callaerts P, Dermaut B (2014) TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends Mol Med 20(2):66–71. doi:10.1016/j.molmed.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  30. Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-Radford NR, Hutton ML et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61(5):435–445. doi:10.1002/ana.21154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Uryu K, Nakashima-Yasuda H, Forman MS, Kwong LK, Clark CM, Grossman M, Miller BL, Kretzschmar HA et al (2008) Concomitant TAR-DNA-Binding Protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 67(6):555–564. doi:10.1097/NEN.0b013e31817713b5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Polymenidou M, Cleveland DW (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147(3):498–508. doi:10.1016/j.cell.2011.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arai T (2014) Significance and limitation of the pathological classification of TDP-43 proteinopathy. Neuropathology 34(6):578–588. doi:10.1111/neup.12138

    Article  CAS  PubMed  Google Scholar 

  34. Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E, Perry RH, Trojanowski JQ et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122(1):111–113. doi:10.1007/s00401-011-0845-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR, Petersen RC, Dickson DW (2014) Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol 127(3):441–450. doi:10.1007/s00401-013-1211-9

    Article  CAS  PubMed  Google Scholar 

  36. Tremblay C, St-Amour I, Schneider J, Bennett DA, Calon F (2011) Accumulation of transactive response DNA binding protein 43 in mild cognitive impairment and Alzheimer disease. J Neuropathol Exp Neurol 70(9):788–798. doi:10.1097/NEN.0b013e31822c62cf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rauramaa T, Pikkarainen M, Englund E, Ince PG, Jellinger K, Paetau A, Alafuzoff I (2011) TAR-DNA binding protein-43 and alterations in the hippocampus. J Neural Transm 118(5):683–689. doi:10.1007/s00702-010-0574-5

    Article  CAS  PubMed  Google Scholar 

  38. Josephs KA, Whitwell JL, Weigand SD, Murray ME, Tosakulwong N, Liesinger AM, Petrucelli L, Senjem ML et al (2014) TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol 127(6):811–824. doi:10.1007/s00401-014-1269-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Josephs KA, Whitwell JL, Knopman DS, Hu WT, Stroh DA, Baker M, Rademakers R, Boeve BF et al (2008) Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70(19 Pt 2):1850–1857. doi:10.1212/01.wnl.0000304041.09418.b1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jung Y, Dickson DW, Murray ME, Whitwell JL, Knopman DS, Boeve BF, Jack CR, Parisi JE et al (2014) TDP-43 in Alzheimer’s disease is not associated with clinical FTLD or Parkinsonism. J Neurol 261(7):1344–1348. doi:10.1007/s00415-014-7352-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vatsavayi AV, Kofler J, Demichele-Sweet MA, Murray PS, Lopez OL, Sweet RA (2014) TAR DNA-binding protein 43 pathology in Alzheimer’s disease with psychosis. Int Psychogeriatr 26(6):987–994. doi:10.1017/S1041610214000246

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wurtman R (2015) Biomarkers in the diagnosis and management of Alzheimer’s disease. Metab Clin Exp 64(3 Suppl 1):S47–50. doi:10.1016/j.metabol.2014.10.034

    Article  CAS  PubMed  Google Scholar 

  43. Foulds P, McAuley E, Gibbons L, Davidson Y, Pickering-Brown SM, Neary D, Snowden JS, Allsop D et al (2008) TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol 116(2):141–146. doi:10.1007/s00401-008-0389-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Foulds PG, Davidson Y, Mishra M, Hobson DJ, Humphreys KM, Taylor M, Johnson N, Weintraub S et al (2009) Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathol 118(5):647–658. doi:10.1007/s00401-009-0594-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feneberg E, Steinacker P, Lehnert S, Schneider A, Walther P, Thal DR, Linsenmeier M, Ludolph AC et al (2014) Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. Amyotroph Lateral Scler Frontotemporal Degener 15(5–6):351–356. doi:10.3109/21678421.2014.905606

    Article  CAS  PubMed  Google Scholar 

  46. Hu WT, Chen-Plotkin A, Grossman M, Arnold SE, Clark CM, Shaw LM, McCluskey L, Elman L et al (2010) Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology 75(23):2079–2086. doi:10.1212/WNL.0b013e318200d78d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang J, Yan K, Wu ZQ, Zheng CY, Xu RX, Chen LH, Wen ZM, Zhao HQ et al (2014) TDP-43 interaction with the intracellular domain of amyloid precursor protein induces p53-associated apoptosis. Neurosci Lett 569:131–136. doi:10.1016/j.neulet.2014.03.075

    Article  CAS  PubMed  Google Scholar 

  48. Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI (1994) Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 57(4):419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sanz-Blasco S, Valero RA, Rodriguez-Crespo I, Villalobos C, Nunez L (2008) Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One 3(7), e2718. doi:10.1371/journal.pone.0002718

    Article  PubMed  PubMed Central  Google Scholar 

  50. Herman AM, Khandelwal PJ, Stanczyk BB, Rebeck GW, Moussa CE (2011) β-amyloid triggers ALS-associated TDP-43 pathology in AD models. Brain Res 1386:191–199. doi:10.1016/j.brainres.2011.02.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu G, Stevens SM Jr, Moore BD, McClung S, Borchelt DR (2013) Cytosolic proteins lose solubility as amyloid deposits in a transgenic mouse model of Alzheimer-type amyloidosis. Hum Mol Genet 22(14):2765–2774. doi:10.1093/hmg/ddt121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fang YS, Tsai KJ, Chang YJ, Kao P, Woods R, Kuo PH, Wu CC, Liao JY et al (2014) Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat Commun 5:4824. doi:10.1038/ncomms5824

    Article  CAS  PubMed  Google Scholar 

  53. De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV (2012) Alzheimer’s disease. Subcell Biochem 65:329–352. doi:10.1007/978-94-007-5416-4_14

    Article  CAS  PubMed  Google Scholar 

  54. Higashi S, Iseki E, Yamamoto R, Minegishi M, Hino H, Fujisawa K, Togo T, Katsuse O et al (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294. doi:10.1016/j.brainres.2007.09.048

    Article  CAS  PubMed  Google Scholar 

  55. Robinson AC, Thompson JC, Weedon L, Rollinson S, Pickering-Brown S, Snowden JS, Davidson YS, Mann DM (2014) No interaction between tau and TDP-43 pathologies in either frontotemporal lobar degeneration or motor neurone disease. Neuropathol Appl Neurobiol 40(7):844–854. doi:10.1111/nan.12155

    Article  CAS  PubMed  Google Scholar 

  56. Yarchoan M, Toledo JB, Lee EB, Arvanitakis Z, Kazi H, Han LY, Louneva N, Lee VM et al (2014) Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer’s disease and tauopathies. Acta Neuropathol 128(5):679–689. doi:10.1007/s00401-014-1328-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liachko NF, McMillan PJ, Strovas TJ, Loomis E, Greenup L, Murrell JR, Ghetti B, Raskind MA et al (2014) The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43. PLoS Genet 10(12), e1004803. doi:10.1371/journal.pgen.1004803

    Article  PubMed  PubMed Central  Google Scholar 

  58. Youmans KL, Wolozin B (2012) TDP-43: a new player on the AD field? Exp Neurol 237(1):90–95. doi:10.1016/j.expneurol.2012.05.018

    Article  PubMed  PubMed Central  Google Scholar 

  59. Latta CH, Brothers HM, Wilcock DM (2014) Neuroinflammation in Alzheimer’s disease; a source of heterogeneity and target for personalized therapy. Neuroscience. doi:10.1016/j.neuroscience.2014.09.061

    PubMed  PubMed Central  Google Scholar 

  60. Kumar-Singh S (2011) Progranulin and TDP-43: mechanistic links and future directions. J Mol Neurosci 45(3):561–573. doi:10.1007/s12031-011-9625-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S, Sun B, Min SW, Gan L et al (2012) Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest 122(11):3955–3959. doi:10.1172/JCI63113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Herman AM, Khandelwal PJ, Rebeck GW, Moussa CE (2012) Wild type TDP-43 induces neuro-inflammation and alters APP metabolism in lentiviral gene transfer models. Exp Neurol 235(1):297–305. doi:10.1016/j.expneurol.2012.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murata H, Hattori T, Maeda H, Takashiba S, Takigawa M, Kido J, Nagata T (2014) Identification of transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) as a novel factor for TNF-alpha expression upon lipopolysaccharide stimulation in human monocytes. J Periodontal Res. doi:10.1111/jre.12227

    PubMed  Google Scholar 

  64. Brettschneider J, Libon DJ, Toledo JB, Xie SX, McCluskey L, Elman L, Geser F, Lee VM et al (2012) Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol 123(3):395–407. doi:10.1007/s00401-011-0932-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Scheff SW, Neltner JH, Nelson PT (2014) Is synaptic loss a unique hallmark of Alzheimer’s disease? Biochem Pharmacol 88(4):517–528. doi:10.1016/j.bcp.2013.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hazelett DJ, Chang JC, Lakeland DL, Morton DB (2012) Comparison of parallel high-throughput RNA sequencing between knockout of TDP-43 and its overexpression reveals primarily nonreciprocal and nonoverlapping gene expression changes in the central nervous system of Drosophila. G3 (Bethesda) 2(7):789–802. doi:10.1534/g3.112.002998

    Article  CAS  PubMed Central  Google Scholar 

  67. Medina DX, Orr ME, Oddo S (2014) Accumulation of C-terminal fragments of transactive response DNA-binding protein 43 leads to synaptic loss and cognitive deficits in human TDP-43 transgenic mice. Neurobiol Aging 35(1):79–87. doi:10.1016/j.neurobiolaging.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  68. Narayanan RK, Mangelsdorf M, Panwar A, Butler TJ, Noakes PG, Wallace RH (2013) Identification of RNA bound to the TDP-43 ribonucleoprotein complex in the adult mouse brain. Amyotroph Lateral Scler Frontotemporal Degener 14(4):252–260. doi:10.3109/21678421.2012.734520

    Article  CAS  PubMed  Google Scholar 

  69. Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K (2013) Amyotrophic lateral sclerosis–a model of corticofugal axonal spread. Nat Rev Neurol 9(12):708–714. doi:10.1038/nrneurol.2013.221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gulino R, Forte S, Parenti R, Gulisano M (2015) TDP-43 as a modulator of synaptic plasticity in a mouse model of spinal motoneuron degeneration. CNS Neurol Disord Drug Targets 14(1):55–60

    Article  CAS  PubMed  Google Scholar 

  71. Godena VK, Romano G, Romano M, Appocher C, Klima R, Buratti E, Baralle FE, Feiguin F (2011) TDP-43 regulates Drosophila neuromuscular junctions growth by modulating Futsch/MAP1B levels and synaptic microtubules organization. PLoS One 6(3), e17808. doi:10.1371/journal.pone.0017808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS, Han SS, Kiskinis E, Winborn B et al (2014) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81(3):536–543. doi:10.1016/j.neuron.2013.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Diaper DC, Adachi Y, Sutcliffe B, Humphrey DM, Elliott CJ, Stepto A, Ludlow ZN, Vanden Broeck L et al (2013) Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes. Hum Mol Genet 22(8):1539–1557. doi:10.1093/hmg/ddt005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Colca JR, Feinstein DL (2012) Altering mitochondrial dysfunction as an approach to treating Alzheimer’s disease. Adv Pharmacol 64:155–176. doi:10.1016/B978-0-12-394816-8.00005-2

    Article  CAS  PubMed  Google Scholar 

  75. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120(Pt 5):838–848. doi:10.1242/jcs.03381

    Article  CAS  PubMed  Google Scholar 

  76. Galindo MF, Ikuta I, Zhu X, Casadesus G, Jordan J (2010) Mitochondrial biology in Alzheimer’s disease pathogenesis. J Neurochem 114(4):933–945. doi:10.1111/j.1471-4159.2010.06814.x

    CAS  PubMed  Google Scholar 

  77. Sasaki S, Takeda T, Shibata N, Kobayashi M (2010) Alterations in subcellular localization of TDP-43 immunoreactivity in the anterior horns in sporadic amyotrophic lateral sclerosis. Neurosci Lett 478(2):72–76. doi:10.1016/j.neulet.2010.04.068

    Article  CAS  PubMed  Google Scholar 

  78. Stoica R, De Vos KJ, Paillusson S, Mueller S, Sancho RM, Lau KF, Vizcay-Barrena G, Lin WL et al (2014) ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun 5:3996. doi:10.1038/ncomms4996

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yamashita T, Kwak S (2014) The molecular link between inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients. Brain Res 1584:28–38. doi:10.1016/j.brainres.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  80. Braun RJ, Sommer C, Carmona-Gutierrez D, Khoury CM, Ring J, Buttner S, Madeo F (2011) Neurotoxic 43-kDa TAR DNA-binding protein (TDP-43) triggers mitochondrion-dependent programmed cell death in yeast. J Biol Chem 286(22):19958–19972. doi:10.1074/jbc.M110.194852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lu J, Duan W, Guo Y, Jiang H, Li Z, Huang J, Hong K, Li C (2012) Mitochondrial dysfunction in human TDP-43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin. Brain Res Bull 89(5–6):185–190. doi:10.1016/j.brainresbull.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  82. Stribl C, Samara A, Trumbach D, Peis R, Neumann M, Fuchs H, Gailus-Durner V, Hrabe de Angelis M et al (2014) Mitochondrial dysfunction and decrease in body weight of a transgenic knock-in mouse model for TDP-43. J Biol Chem 289(15):10769–10784. doi:10.1074/jbc.M113.515940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Caccamo A, Magri A, Oddo S (2010) Age-dependent changes in TDP-43 levels in a mouse model of Alzheimer disease are linked to Abeta oligomers accumulation. Mol Neurodegener 5:51. doi:10.1186/1750-1326-5-51

    Article  PubMed  PubMed Central  Google Scholar 

  84. Caragounis A, Price KA, Soon CP, Filiz G, Masters CL, Li QX, Crouch PJ, White AR (2010) Zinc induces depletion and aggregation of endogenous TDP-43. Free Radic Biol Med 48(9):1152–1161. doi:10.1016/j.freeradbiomed.2010.01.035

    Article  CAS  PubMed  Google Scholar 

  85. Sheng B, Gong K, Niu Y, Liu L, Yan Y, Lu G, Zhang L, Hu M et al (2009) Inhibition of gamma-secretase activity reduces Abeta production, reduces oxidative stress, increases mitochondrial activity and leads to reduced vulnerability to apoptosis: implications for the treatment of Alzheimer’s disease. Free Radic Biol Med 46(10):1362–1375. doi:10.1016/j.freeradbiomed.2009.02.018

    Article  CAS  PubMed  Google Scholar 

  86. Wang W, Li L, Lin WL, Dickson DW, Petrucelli L, Zhang T, Wang X (2013) The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Hum Mol Genet 22(23):4706–4719. doi:10.1093/hmg/ddt319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tadic V, Prell T, Lautenschlaeger J, Grosskreutz J (2014) The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front Cell Neurosci 8:147. doi:10.3389/fncel.2014.00147

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vaccaro A, Patten SA, Ciura S, Maios C, Therrien M, Drapeau P, Kabashi E, Parker JA (2012) Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio. PLoS One 7(7), e42117. doi:10.1371/journal.pone.0042117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vaccaro A, Patten SA, Aggad D, Julien C, Maios C, Kabashi E, Drapeau P, Parker JA (2013) Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol Dis 55:64–75. doi:10.1016/j.nbd.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  90. Armstrong GA, Drapeau P (2013) Calcium channel agonists protect against neuromuscular dysfunction in a genetic model of TDP-43 mutation in ALS. J Neurosci 33(4):1741–1752. doi:10.1523/JNEUROSCI.4003-12.2013

    Article  CAS  PubMed  Google Scholar 

  91. Joardar A, Menzl J, Podolsky TC, Manzo E, Estes PS, Ashford S, Zarnescu DC (2014) PPAR gamma activation is neuroprotective in a Drosophila model of ALS based on TDP-43. Hum Mol Genet. doi:10.1093/hmg/ddu587

    PubMed  PubMed Central  Google Scholar 

  92. Wang IF, Tsai KJ, Shen CK (2013) Autophagy activation ameliorates neuronal pathogenesis of FTLD-U mice: a new light for treatment of TARDBP/TDP-43 proteinopathies. Autophagy 9(2):239–240. doi:10.4161/auto.22526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81471309, 81371406, and 81171209), the Shandong Provincial Outstanding Medical Academic Professional Program, Qingdao Key Health Discipline Development Fund, Qingdao Outstanding Health Professional Development Fund, and Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders.

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Tan or Jin-Tai Yu.

Additional information

X. L. Chang and M. S. Tan are co-first authors.

Xiao-Long Chang and Meng-Shan Tan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, XL., Tan, MS., Tan, L. et al. The Role of TDP-43 in Alzheimer’s Disease. Mol Neurobiol 53, 3349–3359 (2016). https://doi.org/10.1007/s12035-015-9264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9264-5

Keywords

Navigation