Skip to main content
Log in

Induction of GDNF and BDNF by hRheb(S16H) Transduction of SNpc Neurons: Neuroprotective Mechanisms of hRheb(S16H) in a Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The transduction of dopaminergic (DA) neurons with human ras homolog enriched in brain, which has a S16H mutation [hRheb(S16H)] protects the nigrostriatal DA projection in the 6-hydroxydopamine (6-OHDA)-treated animal model of Parkinson’s disease (PD). However, it is still unclear whether the expression of active hRheb induces the production of neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), which are involved in neuroprotection, in mature neurons. Here, we show that transduction of nigral DA neurons with hRheb(S16H) significantly increases the levels of phospho-cyclic adenosine monophosphate (cAMP) response element-binding protein (p-CREB), GDNF, and BDNF in neurons, which are attenuated by rapamycin, a specific inhibitor of mammalian target of rapamycin complex 1 (mTORC1). Moreover, treatment with specific neutralizing antibodies for GDNF and BDNF reduced the protective effects of hRheb(S16H) against 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity. These results show that activation of hRheb/mTORC1 signaling pathway could impart to DA neurons the important ability to continuously produce GDNF and BDNF as therapeutic agents against PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

6-OHDA:

6-Hydroxydopamine

AAV1:

Adeno-associated virus 1

ANOVA:

Analysis of variance

AP:

Anterior-posterior

BDNF:

Brain-derived neurotrophic factor

DA:

Dopaminergic

DAPI:

4′,6-Diamidino-2-phenylindole

DV:

Dorsal-ventral

FLAG:

FLAG-tag

GDNF:

Glial cell line-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

GFP:

Green fluorescent protein

hRheb(S16H):

Human Ras homolog enriched in brain with a S16H mutation

ip:

Immunopositive

MFB:

Medial forebrain bundle

ML:

Medial-lateral

MPP+ :

1-Methyl-4-phenylpyridinium

mTORC1:

Mammalian target of rapamycin complex 1

p-CREB:

Phospho-cAMP response element binding protein

PBS:

Phosphate-buffered saline

PD:

Parkinson’s disease

SD:

Sprague-Dawley

SN:

Substantia nigra

SNpc:

Substantia nigra pars compacta

STR:

Striatum

TH:

Tyrosine hydroxylase

References

  1. Burke RE, O'Malley K (2013) Axon degeneration in Parkinson’s disease. Exp Neurol 246:72–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116(7):1744–1754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175

    Article  CAS  PubMed  Google Scholar 

  4. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130–1132

    Article  CAS  PubMed  Google Scholar 

  5. Manfredsson FP, Okun MS, Mandel RJ (2009) Gene therapy for neurological disorders: challenges and future prospects for the use of growth factors for the treatment of Parkinson’s disease. Curr Gene Ther 9(5):375–388

    Article  CAS  PubMed  Google Scholar 

  6. Siegel GJ, Chauhan NB (2000) Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Brain Res Rev 33(2–3):199–227

    Article  CAS  PubMed  Google Scholar 

  7. Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, Donnan GA (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 166(1):127–135

    Article  CAS  PubMed  Google Scholar 

  8. Studer L, Spenger C, Seiler RW, Othberg A, Lindvall O, Odin P (1996) Effects of brain-derived neurotrophic factor on neuronal structure of dopaminergic neurons in dissociated cultures of human fetal mesencephalon. Exp Brain Res 108(2):328–336

    Article  CAS  PubMed  Google Scholar 

  9. Chauhan NB, Siegel GJ, Lee JM (2001) Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson’s disease brain. J Chem Neuroanat 21(4):277–288

    Article  CAS  PubMed  Google Scholar 

  10. Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350(6315):230–232

    Article  CAS  PubMed  Google Scholar 

  11. Kholodilov N, Kim SR, Yarygina O, Kareva T, Cho JW, Baohan A, Burke RE (2011) Glial cell line-derived neurotrophic factor receptor-alpha1 expressed in striatum in trans regulates development and injury response of dopamine neurons of the substantia nigra. J Neurochem 116(4):486–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Creedon DJ, Tansey MG, Baloh RH, Osborne PA, Lampe PA, Fahrner TJ, Heuckeroth RO, Milbrandt J, Johnson EM Jr (1997) Neurturin shares receptors and signal transduction pathways with glial cell line-derived neurotrophic factor in sympathetic neurons. Proc Natl Acad Sci U S A 94(13):7018–7023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bhave SV, Ghoda L, Hoffman PL (1999) Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J Neurosci 19(9):3277–3286

    CAS  PubMed  Google Scholar 

  14. Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L, Singh BB (2012) Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest 122(4):1354–1367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kim SR, Chen X, Oo TF, Kareva T, Yarygina O, Wang C, During M, Kholodilov N, Burke RE (2011) Dopaminergic pathway reconstruction by Akt/Rheb-induced axon regeneration. Ann Neurol 70(1):110–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kim SR, Kareva T, Yarygina O, Kholodilov N, Burke RE (2012) AAV transduction of dopamine neurons with constitutively active Rheb protects from neurodegeneration and mediates axon regrowth. Mol Ther 20(2):275–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  18. Park ES, Kim SR, Jin BK (2012) Transient receptor potential vanilloid subtype 1 contributes to mesencephalic dopaminergic neuronal survival by inhibiting microglia-originated oxidative stress. Brain Res Bull 89(3–4):92–96

    Article  CAS  PubMed  Google Scholar 

  19. Kurauchi Y, Hisatsune A, Isohama Y, Mishima S, Katsuki H (2012) Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. Br J Pharmacol 166(3):1151–1168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zhou J, Blundell J, Ogawa S, Kwon CH, Zhang W, Sinton C, Powell CM, Parada LF (2009) Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J Neurosci 29(6):1773–1783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chung YC, Kim SR, Jin BK (2010) Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson’s disease. J Immunol 185(2):1230–1237

    Article  CAS  PubMed  Google Scholar 

  22. Kim SR, Lee DY, Chung ES, Oh UT, Kim SU, Jin BK (2005) Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. J Neurosci 25(3):662–671

    Article  CAS  PubMed  Google Scholar 

  23. Pascual A, Hidalgo-Figueroa M, Piruat JI, Pintado CO, Gomez-Diaz R, Lopez-Barneo J (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11(7):755–761

    Article  CAS  PubMed  Google Scholar 

  24. Cen X, Nitta A, Ohya S, Zhao Y, Ozawa N, Mouri A, Ibi D, Wang L, Suzuki M, Saito K, Ito Y, Kawagoe T, Noda Y, Furukawa S, Nabeshima T (2006) An analog of a dipeptide-like structure of FK506 increases glial cell line-derived neurotrophic factor expression through cAMP response element-binding protein activated by heat shock protein 90/Akt signaling pathway. J Neurosci 26(12):3335–3344

    Article  CAS  PubMed  Google Scholar 

  25. Jeon SJ, Rhee SY, Seo JE, Bak HR, Lee SH, Ryu JH, Cheong JH, Shin CY, Kim GH, Lee YS, Ko KH (2011) Oroxylin A increases BDNF production by activation of MAPK-CREB pathway in rat primary cortical neuronal culture. Neurosci Res 69(3):214–222

    Article  CAS  PubMed  Google Scholar 

  26. Altar CA, Heikkila RE, Manzino L, Marien MR (1986) 1-Methyl-4-phenylpyridine (MPP+): regional dopamine neuron uptake, toxicity, and novel rotational behavior following dopamine receptor proliferation. Eur J Pharmacol 131(2–3):199–209

    Article  CAS  PubMed  Google Scholar 

  27. Yan L, Findlay GM, Jones R, Procter J, Cao Y, Lamb RF (2006) Hyperactivation of mammalian target of rapamycin (mTOR) signaling by a gain-of-function mutant of the Rheb GTPase. J Biol Chem 281(29):19793–19797

  28. Pochon NA, Menoud A, Tseng JL, Zurn AD, Aebischer P (1997) Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur J Neurosci 9(3):463–471

    Article  CAS  PubMed  Google Scholar 

  29. Gash DM, Zhang Z, Gerhardt G (1998) Neuroprotective and neurorestorative properties of GDNF. Ann Neurol 44(3Suppl1):S121–S125

    Article  CAS  PubMed  Google Scholar 

  30. Peterson AL, Nutt JG (2008) Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics 5(2):270–280

    Article  CAS  PubMed  Google Scholar 

  31. Seroogy KB, Lundgren KH, Tran TM, Guthrie KM, Isackson PJ, Gall CM (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol 342(3):321–334

    Article  CAS  PubMed  Google Scholar 

  32. Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (1999) Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Lett 270(1):45–48

    Article  CAS  PubMed  Google Scholar 

  33. Porritt MJ, Batchelor PE, Howells DW (2005) Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp Neurol 192(1):226–234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Nos. 2008-0061888 and 2012R1A1A1039140).

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byung Kwan Jin or Sang Ryong Kim.

Additional information

Jin Han Nam Eunju Leem and Min-Tae Jeon contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, J.H., Leem, E., Jeon, MT. et al. Induction of GDNF and BDNF by hRheb(S16H) Transduction of SNpc Neurons: Neuroprotective Mechanisms of hRheb(S16H) in a Model of Parkinson’s Disease. Mol Neurobiol 51, 487–499 (2015). https://doi.org/10.1007/s12035-014-8729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8729-2

Keywords

Navigation