Skip to main content

Advertisement

Log in

The Role of Clusterin in Alzheimer’s Disease: Pathways, Pathogenesis, and Therapy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Genetic variation in clusterin gene, also known as apolipoprotein J, has been associated with Alzheimer’s disease (AD) through replicated genome-wide studies, and plasma clusterin levels are associated with brain atrophy, baseline prevalence and severity, and rapid clinical progression in patients with AD, highlighting the importance of clusterin in AD pathogenesis. Emerging data suggest that clusterin contributes to AD through various pathways, including amyloid-β aggregation and clearance, lipid metabolism, neuroinflammation, and neuronal cell cycle control and apoptosis. Moreover, epigenetic regulation of the clusterin expression also seems to play an important role in the pathogenesis of AD. Emerging knowledge of the contribution of clusterin to the pathogenesis of AD presents new opportunities for AD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bertram L et al (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23

    PubMed  CAS  Google Scholar 

  2. Thambisetty M et al (2010) Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 67:739–748

    PubMed  Google Scholar 

  3. Schrijvers EM et al (2011) Plasma clusterin and the risk of Alzheimer disease. JAMA 305:1322–1326

    PubMed  CAS  Google Scholar 

  4. Rizzi F et al (2009) Chapter 2: clusterin (CLU): from one gene and two transcripts to many proteins. Adv Cancer Res 104:9–23

    PubMed  CAS  Google Scholar 

  5. de Silva HV et al (1990) Apolipoprotein J: structure and tissue distribution. Biochemistry 29:5380–5389

    PubMed  Google Scholar 

  6. Jones SE, Jomary C (2002) Clusterin. Int J Biochem Cell Biol 34:427–431

    PubMed  CAS  Google Scholar 

  7. Nuutinen T et al (2009) Clusterin: a forgotten player in Alzheimer’s disease. Brain Res Rev 61:89–104

    PubMed  CAS  Google Scholar 

  8. Argraves WS, Morales CR (2004) Immunolocalization of cubilin, megalin, apolipoprotein J, and apolipoprotein A-I in the uterus and oviduct. Mol Reprod Dev 69:419–427

    PubMed  CAS  Google Scholar 

  9. Collard MW, Griswold MD (1987) Biosynthesis and molecular cloning of sulfated glycoprotein 2 secreted by rat Sertoli cells. Biochemistry 26:3297–3303

    PubMed  CAS  Google Scholar 

  10. Butler AW et al (2009) Meta-analysis of linkage studies for Alzheimer’s disease—a web resource. Neurobiol Aging 30:1037–1047

    PubMed  Google Scholar 

  11. Harold D et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    PubMed  CAS  Google Scholar 

  12. Lambert JC et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    PubMed  CAS  Google Scholar 

  13. Seshadri S et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303:1832–1840

    PubMed  CAS  Google Scholar 

  14. Naj AC et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441

    PubMed  CAS  Google Scholar 

  15. Schjeide BM et al (2011) The role of clusterin, complement receptor 1, and phosphatidylinositol binding clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker levels. Arch Gen Psychiatry 68:207–213

    PubMed  CAS  Google Scholar 

  16. Corneveaux JJ et al (2010) Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet 19:3295–3301

    PubMed  CAS  Google Scholar 

  17. Lee JH et al (2009) Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean Hispanic individuals. Arch Neurol 68:320–328

    Google Scholar 

  18. Carrasquillo MM et al (2010) Replication of CLU, CR1, and PICALM associations with Alzheimer disease. Arch Neurol 67:961–964

    PubMed  Google Scholar 

  19. Kamboh MI et al (2010) Association of CLU and PICALM variants with Alzheimer’s disease. Neurobiol Aging 33:518–521

    Google Scholar 

  20. Yu JT et al (2010) Implication of CLU gene polymorphisms in Chinese patients with Alzheimer’s disease. Clin Chim Acta 411:1516–1519

    PubMed  CAS  Google Scholar 

  21. Jun G et al (2010) Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 67:1473–1484

    PubMed  Google Scholar 

  22. Wijsman EM et al (2011) Genome-wide association of familial late-onset Alzheimer’s disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS Genet 7:e1001308

    PubMed  CAS  Google Scholar 

  23. Guerreiro RJ et al (2010) Genetic variability in CLU and its association with Alzheimer’s disease. PLoS One 5:e9510

    PubMed  Google Scholar 

  24. Szymanski M et al (2011) Alzheimer’s risk variants in the Clusterin gene are associated with alternative splicing. Transl Psychiatr 1:e18

    Google Scholar 

  25. Schürmann B et al (2011) Association of the Alzheimer’s disease clusterin risk allele with plasma clusterin concentration. J Alzheimers Dis 25:421–424

    PubMed  Google Scholar 

  26. Xing YY et al (2012) Blood clusterin levels, rs9331888 polymorphism, and the risk of Alzheimer’s disease. J Alzheimers Dis. doi:10.3233/JAD-2011-111844

  27. DeMattos RB et al (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41:193–202

    PubMed  CAS  Google Scholar 

  28. Thambisetty M et al (2010) Proteome-based plasma markers of brain amyloid-β deposition in non-demented older individuals. J Alzheimers Dis 22:1099–1109

    PubMed  CAS  Google Scholar 

  29. Chouliaras L et al (2010) Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 90:498–510

    PubMed  CAS  Google Scholar 

  30. Loison F et al (2006) Up-regulation of the clusterin gene after proteotoxic stress: implication of HSF1–HSF2 heterocomplexes. Biochem J 395:223–231

    PubMed  CAS  Google Scholar 

  31. Rauhala HE et al (2008) Clusterin is epigenetically regulated in prostate cancer. Int J Cancer 123:1601–1609

    PubMed  CAS  Google Scholar 

  32. Nuutinen T et al (2005) Induction of clusterin/apoJ expression by histone deacetylase inhibitors in neural cells. Neurochem Int 47:528–538

    PubMed  CAS  Google Scholar 

  33. Suuronen T et al (2007) Epigenetic regulation of clusterin/apolipoprotein J expression in retinal pigment epithelial cells. Biochem Biophys Res Commun 357:397–401

    PubMed  CAS  Google Scholar 

  34. Hellebrekers et al (2007) Identification of epigenetically silenced genes in tumor endothelial cells. Cancer Res 67:4138–4148

    PubMed  CAS  Google Scholar 

  35. Calvanese V et al (2009) The role of epigenetics in aging and age-related diseases. Ageing Res Rev 8:268–276

    PubMed  CAS  Google Scholar 

  36. Wang SC et al (2008) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 3:e2698

    PubMed  Google Scholar 

  37. Wu J et al (2008) The environment, epigenetics and amyloidogenesis. J Mol Neurosci 34:1–7

    PubMed  Google Scholar 

  38. Chuang DM et al (2009) Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32:591–601

    PubMed  CAS  Google Scholar 

  39. Francis YI et al (2009) Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J Alzheimers Dis 18:131–139

    PubMed  CAS  Google Scholar 

  40. Marks PA, Xu WS (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107:600–608

    PubMed  CAS  Google Scholar 

  41. May PC et al (1990) Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron 5:831–839

    PubMed  CAS  Google Scholar 

  42. Lidström AM et al (1998) Clusterin (apolipoprotein J) protein levels are increased in hippocampus and in frontal cortex in Alzheimer’s disease. Exp Neurol 154:511–521

    PubMed  Google Scholar 

  43. Giannakopoulos P et al (1998) Possible neuroprotective role of clusterin in Alzheimer’s disease: a quantitative immunocytochemical study. Acta Neuropathol 95:387–394

    PubMed  CAS  Google Scholar 

  44. Bertrand P et al (1995) Association of apolipoprotein E genotype with brain levels of apolipoprotein E and apolipoprotein J (clusterin) in Alzheimer disease. Brain Res Mol Brain Res 33:174–178

    PubMed  CAS  Google Scholar 

  45. Harr SD et al (1996) Brain expression of apolipoproteins E, J, and A-I in Alzheimer’s disease. J Neurochem 66:2429–2435

    PubMed  CAS  Google Scholar 

  46. Suzuki T et al (2002) Predominant apolipoprotein J exists as lipid-poor mixtures in cerebrospinal fluid. Ann Clin Lab Sci 32:369–376

    PubMed  CAS  Google Scholar 

  47. Nilselid AM et al (2006) Clusterin in cerebrospinal fluid: analysis of carbohydrates and quantification of native and glycosylated forms. Neurochem Int 48:718–728

    PubMed  CAS  Google Scholar 

  48. Ghiso J et al (1993) The cerebrospinal-fluid soluble form of Alzheimer’s amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem J 293:27–30

    PubMed  CAS  Google Scholar 

  49. Sihlbom C et al (2008) Structural and quantitative comparison of cerebrospinal fluid glycoproteins in Alzheimer’s disease patients and healthy individuals. Neurochem Res 33:1332–1340

    PubMed  CAS  Google Scholar 

  50. Thambisetty M et al (2012) Plasma clusterin concentration is associated with longitudinal brain atrophy in mild cognitive impairment. NeuroImage 59:212–217

    PubMed  CAS  Google Scholar 

  51. IJsselstijn L et al (2011) Serum clusterin levels are not increased in presymptomatic Alzheimer’s disease. J Proteome Res 10:2006–2010

    PubMed  CAS  Google Scholar 

  52. Trougakos IP, Gonos ES (2002) Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol 34:1430–1448

    PubMed  CAS  Google Scholar 

  53. Matsubara E et al (1996) Apolipoprotein J and Alzheimer’s amyloid beta solubility. Biochem J 316:671–679

    PubMed  CAS  Google Scholar 

  54. Yerbury JJ et al (2007) The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J 21:2312–2322

    PubMed  CAS  Google Scholar 

  55. Oda T et al (1995) Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1–42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp Neurol 136:22–31

    PubMed  CAS  Google Scholar 

  56. Lambert MP et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453

    PubMed  CAS  Google Scholar 

  57. Narayan P et al (2011) The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-β(1–40) peptide. Nat Struct Mol Biol 19:79–83

    PubMed  Google Scholar 

  58. DeMattos RB et al (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 99:10843–10848

    PubMed  CAS  Google Scholar 

  59. Wang YJ et al (2006) Clearance of amyloid-beta in Alzheimer’s disease: progress, problems and perspectives. Drug Discov Today 11:931–938

    PubMed  CAS  Google Scholar 

  60. Cirrito JR et al (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J Neurosci 23:8844–8853

    PubMed  CAS  Google Scholar 

  61. Bateman RJ et al (2006) Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 12:856–861

    PubMed  CAS  Google Scholar 

  62. Bu G (2009) Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10:333–344

    PubMed  CAS  Google Scholar 

  63. Bell RD et al (2007) Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27:909–918

    PubMed  CAS  Google Scholar 

  64. Pluta R (2007) Role of ischemic blood–brain barrier on amyloid plaques development in Alzheimer’s disease brain. Curr Neurovasc Res 4:121–129

    PubMed  CAS  Google Scholar 

  65. Zlokovic BV et al (1996) Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood–brain and blood–cerebrospinal fluid barriers. Proc Natl Acad Sci USA 93:4229–4234

    PubMed  CAS  Google Scholar 

  66. Calero M et al (2000) Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc Res Tech 50:305–315

    PubMed  CAS  Google Scholar 

  67. Hammad SM et al (1997) Interaction of apolipoprotein J-amyloid beta-peptide complex with low density lipoprotein receptor-related protein-2/megalin. A mechanism to prevent pathological accumulation of amyloid beta-peptide. J Biol Chem 272:18644–18649

    PubMed  CAS  Google Scholar 

  68. LaDu MJ et al (2000) Apolipoprotein E receptors mediate the effects of beta-amyloid on astrocyte cultures. J Biol Chem 275:33974–33980

    PubMed  CAS  Google Scholar 

  69. Nuutinen T et al (2007) Amyloid-beta 1–42 induced endocytosis and clusterin/apoJ protein accumulation in cultured human astrocytes. Neurochem Int 50:540–547

    PubMed  CAS  Google Scholar 

  70. Calero M et al (1999) Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem J 344:375–383

    PubMed  CAS  Google Scholar 

  71. Ishikawa Y et al (1998) Distribution and synthesis of apolipoprotein J in the atherosclerotic aorta. Arterioscler Thromb Vasc Biol 18:665–672

    PubMed  CAS  Google Scholar 

  72. Gelissen IC et al (1998) Apolipoprotein J (clusterin) induces cholesterol export from macrophage-foam cells: a potential anti-atherogenic function? Biochem J 331:231–237

    PubMed  CAS  Google Scholar 

  73. Miwa Y et al (2005) Insertion/deletion polymorphism in clusterin gene influences serum lipid levels and carotid intima-media thickness in hypertensive Japanese females. Biochem Biophys Res Commun 331:1587–1593

    PubMed  CAS  Google Scholar 

  74. Martins IJ et al (2009) Cholesterol metabolism and transport in the pathogenesis of Alzheimer’s disease. J Neurochem 111:1275–1308

    PubMed  CAS  Google Scholar 

  75. Salminen A et al (2009) Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 87:181–194

    PubMed  CAS  Google Scholar 

  76. Ferretti MT et al (2011) Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer’s disease. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2011.01.007

  77. in t’ Veld BA et al (2001) Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 345:1515–1521

    PubMed  Google Scholar 

  78. Varvel NH et al (2009) NSAIDs prevent, but do not reverse, neuronal cell cycle reentry in a mouse model of Alzheimer disease. J Clin Invest 119:3692–3702

    PubMed  CAS  Google Scholar 

  79. Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354

    PubMed  CAS  Google Scholar 

  80. Xie Z et al (2005) Apolipoprotein J (clusterin) activates rodent microglia in vivo and in vitro. J Neurochem 93:1038–1046

    PubMed  CAS  Google Scholar 

  81. Falgarone G, Chiocchia G (2009) Chapter 8: clusterin: a multifacet protein at the crossroad of inflammation and autoimmunity. Adv Cancer Res 104:139–170

    PubMed  CAS  Google Scholar 

  82. Urbich C et al (2000) Laminar shear stress upregulates the complement-inhibitory protein clusterin: a novel potent defense mechanism against complement-induced endothelial cell activation. Circulation 101:352–355

    PubMed  CAS  Google Scholar 

  83. Kirszbaum L et al (1992) SP-40,40, a protein involved in the control of the complement pathway, possesses a unique array of disulphide bridges. FEBS Lett 297:70–76

    PubMed  CAS  Google Scholar 

  84. Essabbani A et al (2010) Identification of clusterin domain involved in NF-kappaB pathway regulation. J Biol Chem 285:4273–4277

    PubMed  CAS  Google Scholar 

  85. Takase O et al (2008) Inhibition of NF-kappaB-dependent Bcl-xL expression by clusterin promotes albumin-induced tubular cell apoptosis. Kidney 73:567–577

    CAS  Google Scholar 

  86. Frautschy SA et al (2005) Apolipoprotein J (clusterin) activates rodent microglia in vivo and in vitro. J Neurochem 93:1038–1046

    PubMed  Google Scholar 

  87. Jin G, Howe PH (1997) Regulation of clusterin gene expression by transforming growth factor β. J Biol Chem 272:26620–26626

    PubMed  CAS  Google Scholar 

  88. Santilli G et al (2003) Essential requirement of apolipoprotein J (clusterin) signaling for IkappaB expression and regulation of NF-kappaB activity. J Biol Chem 278:38214–38219

    PubMed  CAS  Google Scholar 

  89. Lee KB et al (2008) Clusterin, a novel modulator of TGF-beta signaling, is involved in Smad2/3 stability. Biochem Biophys Res Commun 366:905–909

    PubMed  CAS  Google Scholar 

  90. Morgan TE et al (1995) Clusterin expression by astrocytes is influenced by transforming growth factor beta 1 and heterotypic cell interactions. J Neuroimmunol 58:101–110

    PubMed  CAS  Google Scholar 

  91. Shannan B et al (2006) Clusterin and DNA repair: a new function in cancer for a key player in apoptosis and cell cycle control. J Mol Histol 37:183–188

    PubMed  CAS  Google Scholar 

  92. Moretti RM et al (2007) Clusterin isoforms differentially affect growth and motility of prostate cells: possible implications in prostate tumorigenesis. Cancer Res 67:10325–10333

    PubMed  CAS  Google Scholar 

  93. Pucci S et al (2004) Modulation of different clusterin isoforms in human colon tumorigenesis. Oncogene 23:2298–2304

    PubMed  CAS  Google Scholar 

  94. Bettuzzi S et al (2002) Clusterin (SGP-2) transient overexpression decreases proliferation rate of SV40-immortalized human prostate epithelial cells by slowing down cell cycle progression. Oncogene 21:4328–4334

    PubMed  CAS  Google Scholar 

  95. Zellweger T et al (2003) Overexpression of the cytoprotective protein clusterin decreases radiosensitivity in the human LNCaP prostate tumour model. BJU Int 92:463–469

    PubMed  CAS  Google Scholar 

  96. Arendt T, Bruckner MK (2007) Linking cell-cycle dysfunction in Alzheimer’s disease to a failure of synaptic plasticity. Biochim Biophys Acta 1772:413–421

    PubMed  CAS  Google Scholar 

  97. Wu ZC et al (2012) CLU in Alzheimer’s disease. Adv Clin Chem 56:155–165

    PubMed  Google Scholar 

  98. Braskie MN et al (2011) Common Alzheimer’s disease risk variant within the CLU gene affects white matter microstructure in young adults. J Neurosci 31:6764–6770

    PubMed  CAS  Google Scholar 

  99. Lancaster TM et al (2011) Neural hyperactivation in carriers of the Alzheimer’s risk variant on the clusterin gene. Eur Neuropsychopharmacol 21:880–884

    PubMed  CAS  Google Scholar 

  100. Mengel-From J et al (2011) Genetic variations in the CLU and PICALM genes are associated with cognitive function in the oldest old. Neurobiol Aging 32:554.e7–554.e11

    Google Scholar 

  101. Dati G et al (2007) Beneficial effects of r-h-CLU on disease severity in different animal models of peripheral neuropathies. J Neuroimmunol 190:8–17

    PubMed  CAS  Google Scholar 

  102. Navab M et al (2005) An oral apoJ peptide renders HDL anti-inflammatory in mice and monkeys and dramatically reduces atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 25:1932–1937

    PubMed  CAS  Google Scholar 

  103. Sleegers K et al (2010) The pursuit of susceptibility genes for Alzheimer’s disease: progress and prospects. Trends Genet 26:84–93

    PubMed  CAS  Google Scholar 

  104. Nuutinen T et al (2010) Valproic acid stimulates clusterin expression in human astrocytes: implications for Alzheimer’s disease. Neurosci Lett 475:64–68

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81000544, 81171209), the Shandong Provincial Natural Science Foundation, China (ZR2010HQ004, ZR2011HZ001), the Medicine and Health Science Technology Development Project of Shandong Province (2011WSA02018, 2011WSA02020), and the Shandong Provincial Outstanding Medical Academic Professional Program.

Conflicts of Interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Tai Yu or Lan Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, JT., Tan, L. The Role of Clusterin in Alzheimer’s Disease: Pathways, Pathogenesis, and Therapy. Mol Neurobiol 45, 314–326 (2012). https://doi.org/10.1007/s12035-012-8237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8237-1

Keywords

Navigation