Skip to main content
Log in

Cellular and Molecular Neurobiology of Brain Preconditioning

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The tolerant brain which is a consequence of adaptation to repeated nonlethal insults is accompanied by the upregulation of protective mechanisms and the downregulation of prodegenerative pathways. During the past 20 years, evidence has accumulated to suggest that protective mechanisms include increased production of chaperones, trophic factors, and other antiapoptotic proteins. In contrast, preconditioning can cause substantial dampening of the organism’s metabolic state and decreased expression of proapoptotic proteins. Recent microarray analyses have also helped to document a role of several molecular pathways in the induction of the brain refractory state. The present review highlights some of these findings and suggests that a better understanding of these mechanisms will inform treatment of a number of neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voss T, Ravina B (2008) Neuroprotection in Parkinson's disease: myth or reality? Curr Neurol Neurosci Rep 8:304–309

    PubMed  Google Scholar 

  2. Geft IL, Fishbein MC, Ninomiya K, Hashida J, Chaux E, Yano J, Y-Rit J, Genov T, Shell W, Ganz W (1982) Intermittent brief periods of ischemia have a cumulative effect and may cause myocardial necrosis. Circulation 66:1150–1153

    PubMed  CAS  Google Scholar 

  3. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    PubMed  CAS  Google Scholar 

  4. Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB (1986) Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol 251:H1306–H1315

    PubMed  CAS  Google Scholar 

  5. Carroll CM, Carroll SM, Overgoor ML, Tobin G, Barker JH (1997) Acute ischemic preconditioning of skeletal muscle prior to flap elevation augments muscle-flap survival. Plast Reconstr Surg 100:58–65

    PubMed  CAS  Google Scholar 

  6. Clavien PA, Selzner M, Rudiger HA, Graf R, Kadry Z, Rousson V, Jochum W (2003) A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann Surg 238:843–852

    PubMed  Google Scholar 

  7. Koti RS, Seifalian AM, Davidson BR (2003) Protection of the liver by ischemic preconditioning: a review of mechanisms and clinical applications. Dig Surg 20:383–396

    PubMed  Google Scholar 

  8. Kato H, Liu Y, Kogure K, Kato K (1994) Induction of 27-kDa heat shock protein following cerebral ischemia in a rat model of ischemic tolerance. Brain Res 634:235–244

    PubMed  CAS  Google Scholar 

  9. Calabrese EJ (2008) Converging concepts: adaptive response, preconditioning, and the Yerkes–Dodson Law are manifestations of hormesis. Ageing Res Rev 7:8–20

    PubMed  CAS  Google Scholar 

  10. Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26:248–254

    PubMed  CAS  Google Scholar 

  11. Zhao H (2007) The protective effect of ischemic postconditioning against ischemic injury: from the heart to the brain. J Neuroimmune Pharmacol 2:313–318

    PubMed  Google Scholar 

  12. Fisher M (2008) Stroke and TIA: epidemiology, risk factors, and the need for early intervention. Am J Manag Care 14:S204–S211

    PubMed  Google Scholar 

  13. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O'Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y (2008) Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117:e25–e146

    PubMed  Google Scholar 

  14. Ginsberg MD (2003) Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke 34:214–223

    PubMed  Google Scholar 

  15. Hossmann KA (2006) Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 26:1057–1083

    PubMed  Google Scholar 

  16. Turner R, Vink R (2007) Inhibition of neurogenic inflammation as a novel treatment for ischemic stroke. Drug News Perspect 20:221–226

    PubMed  CAS  Google Scholar 

  17. Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9:119–131

    PubMed  CAS  Google Scholar 

  18. Pulsinelli WA, Jacewicz M, Levy DE, Petito CK, Plum F (1997) Ischemic brain injury and the therapeutic window. Ann N Y Acad Sci 835:187–193

    PubMed  CAS  Google Scholar 

  19. Nighoghossian N, Wiart M, Cakmak S, Berthezene Y, Derex L, Cho TH, Nemoz C, Chapuis F, Tisserand GL, Pialat JB, Trouillas P, Froment JC, Hermier M (2007) Inflammatory response after ischemic stroke: a USPIO-enhanced MRI study in patients. Stroke 38:303–307

    PubMed  Google Scholar 

  20. Arboix A, Cabeza N, Garcia-Eroles L, Massons J, Oliveres M, Targa C, Balcells M (2004) Relevance of transient ischemic attack to early neurological recovery after nonlacunar ischemic stroke. Cerebrovasc Dis 18:304–311

    PubMed  CAS  Google Scholar 

  21. Moncayo J, de Freitas GR, Bogousslavsky J, Altieri M, van Melle G (2000) Do transient ischemic attacks have a neuroprotective effect? Neurology 54:2089–2094

    PubMed  CAS  Google Scholar 

  22. Zsuga J, Gesztelyi R, Juhasz B, Kemeny-Beke A, Fekete I, Csiba L, Bereczki D (2008) Prior transient ischemic attack is independently associated with lesser in-hospital case fatality in acute stroke. Psychiatry Clin Neurosci 62:705–712

    PubMed  Google Scholar 

  23. Gross ER, Gross GJ (2007) Ischemic preconditioning and myocardial infarction: an update and perspective. Drug Discov Today Dis Mech 4:165–174

    PubMed  Google Scholar 

  24. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    PubMed  CAS  Google Scholar 

  25. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528:21–24

    PubMed  CAS  Google Scholar 

  26. Kato H, Liu Y, Araki T, Kogure K (1992) MK-801, but not anisomycin, inhibits the induction of tolerance to ischemia in the gerbil hippocampus. Neurosci Lett 139:118–121

    PubMed  CAS  Google Scholar 

  27. Miyashita K, Abe H, Nakajima T, Ishikawa A, Nishiura M, Sawada T, Naritomi H (1994) Induction of ischaemic tolerance in gerbil hippocampus by pretreatment with focal ischaemia. Neuroreport 6:46–48

    PubMed  CAS  Google Scholar 

  28. Ohtsuki T, Ruetzler CA, Tasaki K, Hallenbeck JM (1996) Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons. J Cereb Blood Flow Metab 16:1137–1142

    PubMed  CAS  Google Scholar 

  29. Dowden J, Corbett D (1999) Ischemic preconditioning in 18- to 20-month-old gerbils: long-term survival with functional outcome measures. Stroke 30:1240–1246

    PubMed  CAS  Google Scholar 

  30. Kitagawa K, Matsumoto M, Ohtsuki T, Kuwabara K, Mabuchi T, Yagita Y, Hori M, Yanagihara T (2000) Extended neuronal protection induced after sublethal ischemia adjacent to the area with delayed neuronal death. Neuroscience 96:141–146

    PubMed  CAS  Google Scholar 

  31. Liu Y, Kato H, Nakata N, Kogure K (1992) Protection of rat hippocampus against ischemic neuronal damage by pretreatment with sublethal ischemia. Brain Res 586:121–124

    PubMed  CAS  Google Scholar 

  32. Simon RP, Niiro M, Gwinn R (1993) Prior ischemic stress protects against experimental stroke. Neurosci Lett 163:135–137

    PubMed  CAS  Google Scholar 

  33. Glazier SS, O'Rourke DM, Graham DI, Welsh FA (1994) Induction of ischemic tolerance following brief focal ischemia in rat brain. J Cereb Blood Flow Metab 14:545–553

    PubMed  CAS  Google Scholar 

  34. Matsushima K, Hakim AM (1995) Transient forebrain ischemia protects against subsequent focal cerebral ischemia without changing cerebral perfusion. Stroke 26:1047–1052

    PubMed  CAS  Google Scholar 

  35. Belayev L, Ginsberg MD, Alonso OF, Singer JT, Zhao W, Busto R (1996) Bilateral ischemic tolerance of rat hippocampus induced by prior unilateral transient focal ischemia: relationship to c-fos mRNA expression. Neuroreport 8:55–59

    PubMed  CAS  Google Scholar 

  36. Perez-Pinzon MA, Xu GP, Dietrich WD, Rosenthal M, Sick TJ (1997) Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia. J Cereb Blood Flow Metab 17:175–182

    PubMed  CAS  Google Scholar 

  37. Goldberg MP, Choi DW (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13:3510–3524

    PubMed  CAS  Google Scholar 

  38. Martin RL, Lloyd HG, Cowan AI (1994) The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci 17:251–257

    PubMed  CAS  Google Scholar 

  39. Bruer U, Weih MK, Isaev NK, Meisel A, Ruscher K, Bergk A, Trendelenburg G, Wiegand F, Victorov IV, Dirnagl U (1997) Induction of tolerance in rat cortical neurons: hypoxic preconditioning. FEBS Lett 414:117–121

    PubMed  CAS  Google Scholar 

  40. Khaspekov L, Shamloo M, Victorov I, Wieloch T (1998) Sublethal in vitro glucose-oxygen deprivation protects cultured hippocampal neurons against a subsequent severe insult. Neuroreport 9:1273–1276

    PubMed  CAS  Google Scholar 

  41. Grabb MC, Choi DW (1999) Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J Neurosci 19:1657–1662

    PubMed  CAS  Google Scholar 

  42. Tauskela JS, Comas T, Hewitt K, Monette R, Paris J, Hogan M, Morley P (2001) Cross-tolerance to otherwise lethal N-methyl-d-aspartate and oxygen-glucose deprivation in preconditioned cortical cultures. Neuroscience 107:571–584

    PubMed  CAS  Google Scholar 

  43. Meloni BP, Majda BT, Knuckey NW (2002) Evaluation of preconditioning treatments to protect near-pure cortical neuronal cultures from in vitro ischemia induced acute and delayed neuronal death. Brain Res 928:69–75

    PubMed  CAS  Google Scholar 

  44. Hassen GW, Tian D, Ding D, Bergold PJ (2004) A new model of ischemic preconditioning using young adult hippocampal slice cultures. Brain Res Brain Res Protoc 13:135–143

    PubMed  CAS  Google Scholar 

  45. Gaspar T, Kis B, Snipes JA, Lenzser G, Mayanagi K, Bari F, Busija DW (2006) Transient glucose and amino acid deprivation induces delayed preconditioning in cultured rat cortical neurons. J Neurochem 98:555–565

    PubMed  CAS  Google Scholar 

  46. Bickler PE, Zhan X, Fahlman CS (2005) Isoflurane preconditions hippocampal neurons against oxygen-glucose deprivation: role of intracellular Ca2+ and mitogen-activated protein kinase signaling. Anesthesiology 103:532–539

    PubMed  CAS  Google Scholar 

  47. Kis B, Rajapakse NC, Snipes JA, Nagy K, Horiguchi T, Busija DW (2003) Diazoxide induces delayed pre-conditioning in cultured rat cortical neurons. J Neurochem 87:969–980

    PubMed  CAS  Google Scholar 

  48. Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A 92:4666–4670

    PubMed  CAS  Google Scholar 

  49. Badaut J, Hirt L, Price M, de Castro Ribeiro M, Magistretti PJ, Regli L (2005) Hypoxia/hypoglycemia preconditioning prevents the loss of functional electrical activity in organotypic slice cultures. Brain Res 1051:117–122

    PubMed  CAS  Google Scholar 

  50. Arieli Y, Eynan M, Gancz H, Arieli R, Kashi Y (2003) Heat acclimation prolongs the time to central nervous system oxygen toxicity in the rat. Possible involvement of HSP72. Brain Res 962:15–20

    PubMed  CAS  Google Scholar 

  51. Rosenzweig HL, Lessov NS, Henshall DC, Minami M, Simon RP, Stenzel-Poore MP (2004) Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice. Stroke 35:2576–2581

    PubMed  CAS  Google Scholar 

  52. Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, Meller R, Simon RP, Stenzel-Poore MP (2007) Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab 27:1663–1674

    PubMed  CAS  Google Scholar 

  53. Clarkson AN (2007) Anesthetic-mediated protection/preconditioning during cerebral ischemia. Life Sci 80:1157–1175

    PubMed  CAS  Google Scholar 

  54. Kitano H, Kirsch JR, Hurn PD, Murphy SJ (2007) Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab 27:1108–1128

    PubMed  CAS  Google Scholar 

  55. Bordet R, Deplanque D, Maboudou P, Puisieux F, Pu Q, Robin E, Martin A, Bastide M, Leys D, Lhermitte M, Dupuis B (2000) Increase in endogenous brain superoxide dismutase as a potential mechanism of lipopolysaccharide-induced brain ischemic tolerance. J Cereb Blood Flow Metab 20:1190–1196

    PubMed  CAS  Google Scholar 

  56. Gidday JM, Fitzgibbons JC, Shah AR, Park TS (1994) Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci Lett 168:221–224

    PubMed  CAS  Google Scholar 

  57. Gidday JM, Shah AR, Maceren RG, Wang Q, Pelligrino DA, Holtzman DM, Park TS (1999) Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab 19:331–340

    PubMed  CAS  Google Scholar 

  58. Kobayashi S, Harris VA, Welsh FA (1995) Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J Cereb Blood Flow Metab 15:721–727

    PubMed  CAS  Google Scholar 

  59. Matsushima K, Hogan MJ, Hakim AM (1996) Cortical spreading depression protects against subsequent focal cerebral ischemia in rats. J Cereb Blood Flow Metab 16:221–226

    PubMed  CAS  Google Scholar 

  60. Plamondon H, Blondeau N, Heurteaux C, Lazdunski M (1999) Mutually protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine A1 receptors and K(ATP) channels. J Cereb Blood Flow Metab 19:1296–1308

    PubMed  CAS  Google Scholar 

  61. Ding YH, Mrizek M, Lai Q, Wu Y, Reyes R Jr., Li J, Davis WW, Ding Y (2006) Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation: an in vivo and in vitro study. Curr Neurovasc Res 3:263–271

    PubMed  CAS  Google Scholar 

  62. Ding YH, Young CN, Luan X, Li J, Rafols JA, Clark JC, McAllister JP 2nd, Ding Y (2005) Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol 109:237–246

    PubMed  CAS  Google Scholar 

  63. Guo M, Cox B, Mahale S, Davis W, Carranza A, Hayes K, Sprague S, Jimenez D, Ding Y (2008) Pre-ischemic exercise reduces matrix metalloproteinase-9 expression and ameliorates blood-brain barrier dysfunction in stroke. Neuroscience 151:340–351

    PubMed  CAS  Google Scholar 

  64. Chen YW, Chen SH, Chou W, Lo YM, Hung CH, Lin MT (2007) Exercise pretraining protects against cerebral ischaemia induced by heat stroke in rats. Br J Sports Med 41:597–602

    PubMed  Google Scholar 

  65. Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, Feuerstein GZ (1998) Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29:1937–1951

    PubMed  CAS  Google Scholar 

  66. Perez-Pinzon MA, Born JG (1999) Rapid preconditioning neuroprotection following anoxia in hippocampal slices: role of the K+ ATP channel and protein kinase C. Neuroscience 89:453–459

    PubMed  CAS  Google Scholar 

  67. Kasischke K, Ludolph AC, Riepe MW (1996) NMDA-antagonists reverse increased hypoxic tolerance by preceding chemical hypoxia. Neurosci Lett 214:175–178

    PubMed  CAS  Google Scholar 

  68. Bhave SV, Ghoda L, Hoffman PL (1999) Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J Neurosci 19:3277–3286

    PubMed  CAS  Google Scholar 

  69. Sommer C, Fahrner A, Kiessling M (2002) [3H]muscimol binding to gamma-aminobutyric acid(A) receptors is upregulated in CA1 neurons of the gerbil hippocampus in the ischemia-tolerant state. Stroke 33:1698–1705

    PubMed  CAS  Google Scholar 

  70. Sommer C, Kiessling M (2002) Ischemia and ischemic tolerance induction differentially regulate protein expression of GluR1, GluR2, and AMPA receptor binding protein in the gerbil hippocampus: GluR2 (GluR-B) reduction does not predict neuronal death. Stroke 33:1093–1100

    PubMed  CAS  Google Scholar 

  71. Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, Meller R, Rosenzweig HL, Tobar E, Shaw TE, Chu X, Simon RP (2003) Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362:1028–1037

    PubMed  CAS  Google Scholar 

  72. Lin CH, Chen PS, Gean PW (2008) Glutamate preconditioning prevents neuronal death induced by combined oxygen-glucose deprivation in cultured cortical neurons. Eur J Pharmacol 589:85–93

    PubMed  CAS  Google Scholar 

  73. Carbonell T, Rama R (2007) Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem 14:857–874

    PubMed  CAS  Google Scholar 

  74. Cadet JL, Brannock C (1998) Free radicals and the pathobiology of brain dopamine systems. Neurochem Int 32:117–131

    PubMed  CAS  Google Scholar 

  75. Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152

    PubMed  CAS  Google Scholar 

  76. Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F (2008) Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev 60:1471–1477

    PubMed  CAS  Google Scholar 

  77. Toyoda T, Kassell NF, Lee KS (1997) Induction of ischemic tolerance and antioxidant activity by brief focal ischemia. Neuroreport 8:847–851

    PubMed  CAS  Google Scholar 

  78. Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke KF, Isaev NK, Dirnagl U (2002) Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33:1889–1898

    PubMed  CAS  Google Scholar 

  79. Schipper HM (2004) Heme oxygenase-1: transducer of pathological brain iron sequestration under oxidative stress. Ann N Y Acad Sci 1012:84–93

    PubMed  CAS  Google Scholar 

  80. Panahian N, Yoshiura M, Maines MD (1999) Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem 72:1187–1203

    PubMed  CAS  Google Scholar 

  81. Li Q, Zhu Y, Jiang H, Xu H, Liu H (2008) Up-regulation of heme oxygenase-1 by isoflurane preconditioning during tolerance against neuronal injury induced by oxygen glucose deprivation. Acta Biochim Biophys Sin (Shanghai) 40:803–810

    CAS  Google Scholar 

  82. Costa AD, Garlid KD (2008) Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am J Physiol Heart Circ Physiol 295:H874–H882

    PubMed  CAS  Google Scholar 

  83. Shamloo M, Rytter A, Wieloch T (1999) Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. Neuroscience 93:81–88

    PubMed  CAS  Google Scholar 

  84. Gonzalez-Zulueta M, Feldman AB, Klesse LJ, Kalb RG, Dillman JF, Parada LF, Dawson TM, Dawson VL (2000) Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. Proc Natl Acad Sci U S A 97:436–441

    PubMed  CAS  Google Scholar 

  85. Choi JS, Kim HY, Cha JH, Lee MY (2006) Ischemic preconditioning-induced activation of ERK1/2 in the rat hippocampus. Neurosci Lett 409:187–191

    PubMed  CAS  Google Scholar 

  86. Wang C, Weihrauch D, Schwabe DA, Bienengraeber M, Warltier DC, Kersten JR, Pratt PF Jr., Pagel PS (2006) Extracellular signal-regulated kinases trigger isoflurane preconditioning concomitant with upregulation of hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression in rats. Anesth Analg 103:281–288

    PubMed  CAS  Google Scholar 

  87. Wang RM, Yang F, Zhang YX (2006) Preconditioning-induced activation of ERK5 is dependent on moderate Ca2+ influx via NMDA receptors and contributes to ischemic tolerance in the hippocampal CA1 region of rats. Life Sci 79:1839–1846

    PubMed  CAS  Google Scholar 

  88. Wang RM, Zhang QG, Li CH, Zhang GY (2005) Activation of extracellular signal-regulated kinase 5 may play a neuroprotective role in hippocampal CA3/DG region after cerebral ischemia. J Neurosci Res 80:391–399

    PubMed  CAS  Google Scholar 

  89. Jia J, Wang X, Li H, Han S, Zu P, Li J (2007) Activations of nPKCepsilon and ERK1/2 were involved in oxygen-glucose deprivation-induced neuroprotection via NMDA receptors in hippocampal slices of mice. J Neurosurg Anesthesiol 19:18–24

    PubMed  Google Scholar 

  90. Lange-Asschenfeldt C, Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA (2004) Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice. J Cereb Blood Flow Metab 24:636–645

    PubMed  CAS  Google Scholar 

  91. Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA (2003) Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. J Neurosci 23:384–391

    PubMed  CAS  Google Scholar 

  92. Raval AP, Dave KR, DeFazio RA, Perez-Pinzon MA (2007) EpsilonPKC phosphorylates the mitochondrial K(+) (ATP) channel during induction of ischemic preconditioning in the rat hippocampus. Brain Res 1184:345–353

    PubMed  CAS  Google Scholar 

  93. Kurkinen K, Busto R, Goldsteins G, Koistinaho J, Perez-Pinzon MA (2001) Isoform-specific membrane translocation of protein kinase C after ischemic preconditioning. Neurochem Res 26:1139–1144

    PubMed  CAS  Google Scholar 

  94. Kurkinen K, Keinanen R, Li W, Koistinaho J (2001) Preconditioning with spreading depression activates specifically protein kinase Cdelta. Neuroreport 12:269–273

    PubMed  CAS  Google Scholar 

  95. Nishimura M, Sugino T, Nozaki K, Takagi Y, Hattori I, Hayashi J, Hashimoto N, Moriguchi T, Nishida E (2003) Activation of p38 kinase in the gerbil hippocampus showing ischemic tolerance. J Cereb Blood Flow Metab 23:1052–1059

    PubMed  CAS  Google Scholar 

  96. Yin XH, Zhang QG, Miao B, Zhang GY (2005) Neuroprotective effects of preconditioning ischaemia on ischaemic brain injury through inhibition of mixed-lineage kinase 3 via NMDA receptor-mediated Akt1 activation. J Neurochem 93:1021–1029

    PubMed  CAS  Google Scholar 

  97. Miao B, Yin XH, Pei DS, Zhang QG, Zhang GY (2005) Neuroprotective effects of preconditioning ischemia on ischemic brain injury through down-regulating activation of JNK1/2 via N-methyl-d-aspartate receptor-mediated Akt1 activation. J Biol Chem 280:21693–21699

    PubMed  CAS  Google Scholar 

  98. Salminen A, Liu PK, Hsu CY (1995) Alteration of transcription factor binding activities in the ischemic rat brain. Biochem Biophys Res Commun 212:939–944

    PubMed  CAS  Google Scholar 

  99. Walton M, Sirimanne E, Williams C, Gluckman P, Dragunow M (1996) The role of the cyclic AMP-responsive element binding protein (CREB) in hypoxic-ischemic brain damage and repair. Brain Res Mol Brain Res 43:21–29

    PubMed  CAS  Google Scholar 

  100. Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR (2000) Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 48:285–296

    PubMed  CAS  Google Scholar 

  101. Chinenov Y, Kerppola TK (2001) Close encounters of many kinds: Fos–Jun interactions that mediate transcription regulatory specificity. Oncogene 20:2438–2452

    PubMed  CAS  Google Scholar 

  102. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    PubMed  CAS  Google Scholar 

  103. Verde P, Casalino L, Talotta F, Yaniv M, Weitzman JB (2007) Deciphering AP-1 function in tumorigenesis: fra-ternizing on target promoters. Cell Cycle 6:2633–2639

    PubMed  CAS  Google Scholar 

  104. Kiessling M, Stumm G, Xie Y, Herdegen T, Aguzzi A, Bravo R, Gass P (1993) Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia. J Cereb Blood Flow Metab 13:914–924

    PubMed  CAS  Google Scholar 

  105. An G, Lin TN, Liu JS, Xue JJ, He YY, Hsu CY (1993) Expression of c-fos and c-jun family genes after focal cerebral ischemia. Ann Neurol 33:457–464

    PubMed  CAS  Google Scholar 

  106. Whitfield PC, Williams R, Pickard JD (1999) Delayed induction of JunB precedes CA1 neuronal death after global ischemia in the gerbil. Brain Res 818:450–458

    PubMed  CAS  Google Scholar 

  107. Yoneda Y, Kuramoto N, Azuma Y, Ogita K, Mitani A, Zhang L, Yanase H, Masuda S, Kataoka K (1998) Possible involvement of activator protein-1 DNA binding in mechanisms underlying ischemic tolerance in the CA1 subfield of gerbil hippocampus. Neuroscience 86:79–97

    PubMed  CAS  Google Scholar 

  108. Kapinya K, Penzel R, Sommer C, Kiessling M (2000) Temporary changes of the AP-1 transcription factor binding activity in the gerbil hippocampus after transient global ischemia, and ischemic tolerance induction. Brain Res 872:282–293

    PubMed  CAS  Google Scholar 

  109. Dhodda VK, Sailor KA, Bowen KK, Vemuganti R (2004) Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem 89:73–89

    PubMed  CAS  Google Scholar 

  110. Sommer C, Gass P, Kiessling M (1995) Selective c-JUN expression in CA1 neurons of the gerbil hippocampus during and after acquisition of an ischemia-tolerant state. Brain Pathol 5:135–144

    PubMed  CAS  Google Scholar 

  111. Hu BR, Fux CM, Martone ME, Zivin JA, Ellisman MH (1999) Persistent phosphorylation of cyclic AMP responsive element-binding protein and activating transcription factor-2 transcription factors following transient cerebral ischemia in rat brain. Neuroscience 89:437–452

    PubMed  CAS  Google Scholar 

  112. Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    PubMed  CAS  Google Scholar 

  113. Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    PubMed  CAS  Google Scholar 

  114. Mabuchi T, Kitagawa K, Kuwabara K, Takasawa K, Ohtsuki T, Xia Z, Storm D, Yanagihara T, Hori M, Matsumoto M (2001) Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci 21:9204–9213

    PubMed  CAS  Google Scholar 

  115. Lee HT, Chang YC, Wang LY, Wang ST, Huang CC, Ho CJ (2004) cAMP response element-binding protein activation in ligation preconditioning in neonatal brain. Ann Neurol 56:611–623

    PubMed  CAS  Google Scholar 

  116. Hara T, Hamada J, Yano S, Morioka M, Kai Y, Ushio Y (2003) CREB is required for acquisition of ischemic tolerance in gerbil hippocampal CA1 region. J Neurochem 86:805–814

    PubMed  CAS  Google Scholar 

  117. Rybnikova E, Gluschenko T, Tulkova E, Churilova A, Jaroshevich O, Baranova K, Samoilov M (2008) Preconditioning induces prolonged expression of transcription factors pCREB and NF-kappa B in the neocortex of rats before and following severe hypobaric hypoxia. J Neurochem 106:1450–1458

    PubMed  CAS  Google Scholar 

  118. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514

    PubMed  CAS  Google Scholar 

  119. Zaman K, Ryu H, Hall D, O'Donovan K, Lin KI, Miller MP, Marquis JC, Baraban JM, Semenza GL, Ratan RR (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosci 19:9821–9830

    PubMed  CAS  Google Scholar 

  120. Chavez JC, LaManna JC (2002) Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J Neurosci 22:8922–8931

    PubMed  CAS  Google Scholar 

  121. Hamrick SE, McQuillen PS, Jiang X, Mu D, Madan A, Ferriero DM (2005) A role for hypoxia-inducible factor-1alpha in desferoxamine neuroprotection. Neurosci Lett 379:96–100

    PubMed  CAS  Google Scholar 

  122. Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158

    PubMed  CAS  Google Scholar 

  123. Liu Y, Kato H, Nakata N, Kogure K (1993) Temporal profile of heat shock protein 70 synthesis in ischemic tolerance induced by preconditioning ischemia in rat hippocampus. Neuroscience 56:921–927

    PubMed  CAS  Google Scholar 

  124. Chen J, Graham SH, Zhu RL, Simon RP (1996) Stress proteins and tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab 16:566–577

    PubMed  CAS  Google Scholar 

  125. Tanaka S, Kitagawa K, Ohtsuki T, Yagita Y, Takasawa K, Hori M, Matsumoto M (2002) Synergistic induction of HSP40 and HSC70 in the mouse hippocampal neurons after cerebral ischemia and ischemic tolerance in gerbil hippocampus. J Neurosci Res 67:37–47

    PubMed  CAS  Google Scholar 

  126. Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Chan PH (2003) Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. J Cereb Blood Flow Metab 23:949–961

    PubMed  Google Scholar 

  127. Yagita Y, Kitagawa K, Ohtsuki T, Tanaka S, Hori M, Matsumoto M (2001) Induction of the HSP110/105 family in the rat hippocampus in cerebral ischemia and ischemic tolerance. J Cereb Blood Flow Metab 21:811–819

    PubMed  CAS  Google Scholar 

  128. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68

    PubMed  CAS  Google Scholar 

  129. Benarroch EE (2005) Neuron–astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 80:1326–1338

    Article  PubMed  CAS  Google Scholar 

  130. Pekny M, Nilsson M (2001) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Google Scholar 

  131. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    PubMed  CAS  Google Scholar 

  132. Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197

    PubMed  CAS  Google Scholar 

  133. Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81:302–313

    PubMed  CAS  Google Scholar 

  134. Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 95:15769–15774

    PubMed  CAS  Google Scholar 

  135. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 96:13496–13500

    PubMed  CAS  Google Scholar 

  136. Watanabe H, Abe H, Takeuchi S, Tanaka R (2000) Protective effect of microglial conditioning medium on neuronal damage induced by glutamate. Neurosci Lett 289:53–66

    PubMed  CAS  Google Scholar 

  137. Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14:2919–2937

    PubMed  CAS  Google Scholar 

  138. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309

    PubMed  CAS  Google Scholar 

  139. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    PubMed  CAS  Google Scholar 

  140. Lindvall O, Ernfors P, Bengzon J, Kokaia Z, Smith ML, Siesjo BK, Persson H (1992) Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci U S A 89:648–652

    PubMed  CAS  Google Scholar 

  141. Merlio JP, Ernfors P, Kokaia Z, Middlemas DS, Bengzon J, Kokaia M, Smith ML, Siesjo BK, Hunter T, Lindvall O (1993) Increased production of the TrkB protein tyrosine kinase receptor after brain insults. Neuron 10:151–164

    PubMed  CAS  Google Scholar 

  142. Takeda A, Onodera H, Sugimoto A, Kogure K, Obinata M, Shibahara S (1993) Coordinated expression of messenger RNAs for nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 in the rat hippocampus following transient forebrain ischemia. Neuroscience 55:23–31

    PubMed  CAS  Google Scholar 

  143. Beck T, Lindholm D, Castren E, Wree A (1994) Brain-derived neurotrophic factor protects against ischemic cell damage in rat hippocampus. J Cereb Blood Flow Metab 14:689–692

    PubMed  CAS  Google Scholar 

  144. Shigeno T, Mima T, Takakura K, Graham DI, Kato G, Hashimoto Y, Furukawa S (1991) Amelioration of delayed neuronal death in the hippocampus by nerve growth factor. J Neurosci 11:2914–2919

    PubMed  CAS  Google Scholar 

  145. Tanaka K, Tsukahara T, Hashimoto N, Ogata N, Yonekawa Y, Kimura T, Taniguchi T (1994) Effect of nerve growth factor on delayed neuronal death after cerebral ischaemia. Acta Neurochir (Wien) 129:64–71

    CAS  Google Scholar 

  146. Marini AM, Jiang X, Wu X, Pan H, Guo Z, Mattson MP, Blondeau N, Novelli A, Lipsky RH (2007) Preconditioning and neurotrophins: a model for brain adaptation to seizures, ischemia and other stressful stimuli. Amino Acids 32:299–304

    PubMed  CAS  Google Scholar 

  147. Truettner J, Busto R, Zhao W, Ginsberg MD, Perez-Pinzon MA (2002) Effect of ischemic preconditioning on the expression of putative neuroprotective genes in the rat brain. Brain Res Mol Brain Res 103:106–115

    PubMed  CAS  Google Scholar 

  148. Pera J, Zawadzka M, Kaminska B, Szczudlik A (2005) Neurotrophic factor expression after focal brain ischemia preceded by different preconditioning strategies. Cerebrovasc Dis 19:247–252

    PubMed  CAS  Google Scholar 

  149. Lee TH, Yang JT, Ko YS, Kato H, Itoyama Y, Kogure K (2008) Influence of ischemic preconditioning on levels of nerve growth factor, brain-derived neurotrophic factor and their high-affinity receptors in hippocampus following forebrain ischemia. Brain Res 1187:1–11

    PubMed  CAS  Google Scholar 

  150. Stenzel-Poore MP, Stevens SL, Simon RP (2004) Genomics of preconditioning. Stroke 35:2683–2686

    PubMed  CAS  Google Scholar 

  151. Meller R, Cameron JA, Torrey DJ, Clayton CE, Ordonez AN, Henshall DC, Minami M, Schindler CK, Saugstad JA, Simon RP (2006) Rapid degradation of Bim by the ubiquitin-proteasome pathway mediates short-term ischemic tolerance in cultured neurons. J Biol Chem 281:7429–7436

    PubMed  CAS  Google Scholar 

  152. Meller R, Minami M, Cameron JA, Impey S, Chen D, Lan JQ, Henshall DC, Simon RP (2005) CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J Cereb Blood Flow Metab 25:234–246

    PubMed  CAS  Google Scholar 

  153. Atkinson TJ (2008) Toll-like receptors, transduction-effector pathways, and disease diversity: evidence of an immunobiological paradigm explaining all human illness? Int Rev Immunol 27:255–281

    PubMed  CAS  Google Scholar 

  154. Stevens SL, Ciesielski TM, Marsh BJ, Yang T, Homen DS, Boule JL, Lessov NS, Simon RP, Stenzel-Poore MP (2008) Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab 28:1040–1047

    PubMed  CAS  Google Scholar 

  155. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP (2008) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience doi:10.1016/j.neuroscience.2008.07.067

Download references

Acknowledgments

This paper is supported by the Intramural Research Program of the National Institute on Drug Abuse, NIH, DHHS. The authors also thank the reviewers whose suggestions helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Lud Cadet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadet, J.L., Krasnova, I.N. Cellular and Molecular Neurobiology of Brain Preconditioning. Mol Neurobiol 39, 50–61 (2009). https://doi.org/10.1007/s12035-009-8051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8051-6

Keywords

Navigation