Skip to main content

Advertisement

Log in

Clinicopathological evaluation of Sox10 expression in diffuse-type gastric adenocarcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Sox10, one of the transcription factors, regulates Wnt/β-catenin signaling in diverse developmental processes in normal tissues. Sox10 is also expressed in variable solid tumors such as breast cancer, salivary tumor, hepatocellular carcinoma, ovarian tumor, nasopharyngeal carcinoma, prostate cancer, and digestive cancer. The role of Sox10 during tumorigenesis is still controversial, especially in digestive cancers; thus, we performed clinicopathological evaluation of Sox10 expression in 41 cases of diffuse-type gastric adenocarcinoma (DGA). We examined the expression of Sox10 by immunohistochemical staining and real-time quantitative reverse transcriptase PCR and evaluated the correlation between Sox10 expression and clinicopathological factors. A low-level expression of Sox10 was significantly associated with high-level venous invasion by immunohistochemical evaluation, while it was significantly associated with high-level lymphatic permeation when analyzed by real-time PCR assay. Survival analysis of 41 cases indicated that high level of vascular permeation was a statistically poor prognostic factor, suggesting that derogation of Sox10 would lead to unfavorable patients’ outcome through the acceleration of vascular invasion. In this study, we revealed the clinical benefit of evaluation of Sox10 expression to predict the risk of vascular permeation which yields patients’ poor prognosis in DGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  2. Cancer Registry and Statistics. Cancer Information Service, National Cancer Center, Japan. 2016. http://ganjoho.jp/reg_stat/statistics/dl/index.html. Accessed 3 Nov 2016.

  3. Sue S, Shibata W, Maeda S. Helicobacter pylori-induced signaling pathways contribute to intestinal metaplasia and gastric carcinogenesis. BioMed Res Int. 2015;2015:737621. doi:10.1155/2015/737621.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang RG, Duan GC, Fan QT, Chen SY. Role of Helicobacter pylori infection in pathogenesis of gastric carcinoma. World J Gastrointest Pathophysiol. 2016;7(1):97–107. doi:10.4291/wjgp.v7.i1.97.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ohba R, Iijima K. Pathogenesis and risk factors for gastric cancer after Helicobacter pylori eradication. World J Gastrointest Oncol. 2016;8(9):663–72. doi:10.4251/wjgo.v8.i9.663.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Castano-Rodriguez N, Kaakoush NO, Mitchell HM. Pattern-recognition receptors and gastric cancer. Front Immunol. 2014;5:336. doi:10.3389/fimmu.2014.00336.

    PubMed  PubMed Central  Google Scholar 

  7. Kim SS, Ruiz VE, Carroll JD, Moss SF. Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett. 2011;305(2):228–38. doi:10.1016/j.canlet.2010.07.014.

    Article  CAS  PubMed  Google Scholar 

  8. Ding SZ, Goldberg JB, Hatakeyama M. Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol. 2010;6(5):851–62. doi:10.2217/fon.10.37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A, et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet. 2014. doi:10.1038/ng.2984.

    PubMed  Google Scholar 

  10. Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014. doi:10.1038/ng.2983.

    Google Scholar 

  11. Theuer CP, de Virgilio C, Keese G, French S, Arnell T, Tolmos J, et al. Gastric adenocarcinoma in patients 40 years of age or younger. Am J Surg. 1996;172(5):473–6. doi:10.1016/s0002-9610(96)00223-1.

    Article  CAS  PubMed  Google Scholar 

  12. Saito H, Takaya S, Fukumoto Y, Osaki T, Tatebe S, Ikeguchi M. Clinicopathologic characteristics and prognosis of gastric cancer in young patients. Yonago Acta Med. 2012;55(3):57–61.

    PubMed  PubMed Central  Google Scholar 

  13. Marques-Lespier JM, Gonzalez-Pons M, Cruz-Correa M. Current perspectives on gastric cancer. Gastroenterol Clin N Am. 2016;45(3):413–28. doi:10.1016/j.gtc.2016.04.002.

    Article  Google Scholar 

  14. Mita MT, Marchesi F, Cecchini S, Tartamella F, Ricco M, Abongwa HK, et al. Prognostic assessment of gastric cancer: retrospective analysis of two decades. Acta Biomed. 2016;87(2):205–11.

    PubMed  Google Scholar 

  15. Park HJ, Ahn JY, Jung HY, Lim H, Lee JH, Choi KS, et al. Clinical characteristics and outcomes for gastric cancer patients aged 18–30 years. Gastric Cancer. 2014;17(4):649–60. doi:10.1007/s10120-013-0331-1.

    Article  PubMed  Google Scholar 

  16. Nadauld LD, Garcia S, Natsoulis G, Bell JM, Miotke L, Hopmans ES, et al. Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer. Genome Biol. 2014;15(8):428. doi:10.1186/s13059-014-0428-9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee YS, Cho YS, Lee GK, Lee S, Kim YW, Jho S, et al. Genomic profile analysis of diffuse-type gastric cancers. Genome Biol. 2014;15(4):R55. doi:10.1186/gb-2014-15-4-r55.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990;346(6281):245–50. doi:10.1038/346245a0.

    Article  CAS  PubMed  Google Scholar 

  19. Hong CS, Saint-Jeannet JP. Sox proteins and neural crest development. Semin Cell Dev Biol. 2005;16(6):694–703. doi:10.1016/j.semcdb.2005.06.005.

    Article  CAS  PubMed  Google Scholar 

  20. Harris ML, Baxter LL, Loftus SK, Pavan WJ. Sox proteins in melanocyte development and melanoma. Pigment Cell Melanoma Res. 2010;23(4):496–513. doi:10.1111/j.1755-148X.2010.00711.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haldin CE, LaBonne C. SoxE factors as multifunctional neural crest regulatory factors. Int J Biochem Cell Biol. 2010;42(3):441–4. doi:10.1016/j.biocel.2009.11.014.

    Article  CAS  PubMed  Google Scholar 

  22. Stolt CC, Wegner M. SoxE function in vertebrate nervous system development. Int J Biochem Cell Biol. 2010;42(3):437–40. doi:10.1016/j.biocel.2009.07.014.

    Article  CAS  PubMed  Google Scholar 

  23. Mollaaghababa R, Pavan WJ. The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene. 2003;22(20):3024–34. doi:10.1038/sj.onc.1206442.

    Article  CAS  PubMed  Google Scholar 

  24. Kelsh RN. Sorting out Sox10 functions in neural crest development. BioEssays. 2006;28(8):788–98. doi:10.1002/bies.20445.

    Article  PubMed  Google Scholar 

  25. Kim J, Lo L, Dormand E, Anderson DJ. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron. 2003;38(1):17–31.

    Article  CAS  PubMed  Google Scholar 

  26. Dravis C, Spike BT, Harrell JC, Johns C, Trejo CL, Southard-Smith EM, et al. Sox10 regulates stem/progenitor and mesenchymal cell states in mammary epithelial cells. Cell Rep. 2015;12(12):2035–48. doi:10.1016/j.celrep.2015.08.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO, Puliti A, et al. SOX10 mutations in patients with Waardenburg–Hirschsprung disease. Nat Genet. 1998;18(2):171–3. doi:10.1038/ng0298-171.

    Article  CAS  PubMed  Google Scholar 

  28. de la Rocha AM, Sampron N, Alonso MM, Matheu A. Role of SOX family of transcription factors in central nervous system tumors. Am J Cancer Res. 2014;4(4):312–24.

    PubMed  PubMed Central  Google Scholar 

  29. Cimino-Mathews A, Subhawong AP, Elwood H, Warzecha HN, Sharma R, Park BH, et al. Neural crest transcription factor Sox10 is preferentially expressed in triple-negative and metaplastic breast carcinomas. Hum Pathol. 2013;44(6):959–65. doi:10.1016/j.humpath.2012.09.005.

    Article  CAS  PubMed  Google Scholar 

  30. Ivanov SV, Panaccione A, Nonaka D, Prasad ML, Boyd KL, Brown B, et al. Diagnostic SOX10 gene signatures in salivary adenoid cystic and breast basal-like carcinomas. Br J Cancer. 2013;109(2):444–51. doi:10.1038/bjc.2013.326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsieh MS, Lee YH, Chang YL. SOX10-positive salivary gland tumors: a growing list, including mammary analogue secretory carcinoma of the salivary gland, sialoblastoma, low-grade salivary duct carcinoma, basal cell adenoma/adenocarcinoma, and a subgroup of mucoepidermoid carcinoma. Hum Pathol. 2016;56:134–42. doi:10.1016/j.humpath.2016.05.021.

    Article  CAS  PubMed  Google Scholar 

  32. Ohtomo R, Mori T, Shibata S, Tsuta K, Maeshima AM, Akazawa C, et al. SOX10 is a novel marker of acinus and intercalated duct differentiation in salivary gland tumors: a clue to the histogenesis for tumor diagnosis. Mod Pathol. 2013;26(8):1041–50. doi:10.1038/modpathol.2013.54.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou D, Bai F, Zhang X, Hu M, Zhao G, Zhao Z, et al. SOX10 is a novel oncogene in hepatocellular carcinoma through Wnt/beta-catenin/TCF4 cascade. Tumour Biol. 2014;35(10):9935–40. doi:10.1007/s13277-014-1893-1.

    Article  CAS  PubMed  Google Scholar 

  34. Kwon AY, Heo I, Lee HJ, Kim G, Kang H, Heo JH, et al. Sox10 expression in ovarian epithelial tumors is associated with poor overall survival. Virchows Arch. 2016;468(5):597–605. doi:10.1007/s00428-016-1918-9.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, Liu ZG, Tang J, Zou RF, Chen XY, Jiang GM, et al. High expression of Sox10 correlates with tumor aggressiveness and poor prognosis in human nasopharyngeal carcinoma. Onco Targets Ther. 2016;9:1671–7. doi:10.2147/ott.s101344.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhong WD, Qin GQ, Dai QS, Han ZD, Chen SM, Ling XH, et al. SOXs in human prostate cancer: implication as progression and prognosis factors. BMC Cancer. 2012;12:248. doi:10.1186/1471-2407-12-248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tong X, Li L, Li X, Heng L, Zhong L, Su X, et al. SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/beta-catenin pathway. Oncotarget. 2014;5(21):10571–83. doi:10.18632/oncotarget.2512.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu X, Chu KM. E-cadherin and gastric cancer: cause, consequence, and applications. BioMed Res Int. 2014;2014:637308. doi:10.1155/2014/637308.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Tomoko Takenami, Masana Urushido, Jun Moriya and Jun Suzuka enthusiastically supported us in IHC staining and RT-PCR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nishihara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical standards

This study was approved by the Medical Ethics Committee of Hokkaido University School of Medicine (15-022).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, M., Nishihara, H., Hayashi, H. et al. Clinicopathological evaluation of Sox10 expression in diffuse-type gastric adenocarcinoma. Med Oncol 34, 8 (2017). https://doi.org/10.1007/s12032-016-0865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0865-2

Keywords

Navigation