Skip to main content

Advertisement

Log in

CISD2 expression is a novel marker correlating with pelvic lymph node metastasis and prognosis in patients with early-stage cervical cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The CDGSH iron sulfur domain2 (CISD2) is an evolutionarily conserved gene. It functions to control mammalian life span and regulate human breast cancer cells proliferation. However, the characteristics of CISD2 expression and its clinical/prognostic significance are unclear in human tumor. Our study aimed to investigate the expression pattern and clinicopathological significance of CISD2 in patients with early-stage cervical cancer. The mRNA and protein expression levels of CISD2 were analyzed in eight cervical cancer cell lines and eight paired cervical cancer tumors by real-time PCR and Western blotting, respectively. Immunohistochemistry was performed to examine CISD2 protein expression in paraffin-embedded tissues from 149 early-stage cervical cancer patients. Statistical analyses were used to evaluate the clinicopathological significance of CISD2 expression. CISD2 expression was significantly upregulated in cervical cancer cells at both the mRNA and protein levels. Statistical analysis showed a significant correlation of CISD2 expression with the squamous cell carcinoma antigen (P = 0.000), myometrium invasion (P = 0.003), recurrence (P = 0.012), lymphovascular space involvement (P = 0.019) and especially pelvic lymph node metastasis (PLNM; P = 0.000). Patients with higher CISD2 expression had shorter overall survival duration than patients with lower CISD2 expression. Multivariate analysis suggested that CISD2 expression might be an independent prognostic indicator for the survival of patients with early-stage cervical cancer. Our results for the first time suggested that high CISD2 expression was closely correlated with PLNM and poor prognosis in early-stage cervical cancer patients. CISD2 protein might be a novel biomarker for early-stage cervical cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Kodama J, Seki N, Masahiro S, Kusumoto T, Nakamura K, Hongo A, Hiramatsu K. Prognostic factors in stage IB–IIB cervical adenocarcinoma patients treated with radical hysterectomy and pelvic lymphadenectomy. J Surg Oncol. 2010;101(5):413–7.

    PubMed  Google Scholar 

  3. Noordhuis MG, Fehrmann RS, Wisman GB, Nijhuis ER, van Zanden JJ, Moerland PD, van Themaat EVL, Volders HH, Kok M, ten Hoor KA, Hollema H, de Vries EG, de Bock GH, van der Zee AG, Schuuring E. Involvement of the TGF-beta and beta-catenin pathways in pelvic lymph node metastasis in early-stage cervical cancer. Clin Cancer Res. 2011;17(6):1317–30.

    Article  PubMed  CAS  Google Scholar 

  4. Berek JS, Hacker NF. Practical gynecologic oncology. Philadelphia: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  5. Conlan AR, Axelrod HL, Cohen AE, Abresch EC, Zuris J, Yee D, Nechushtai R, Jennings PA, Paddock ML. Crystal structure of Miner1: the redox-active 2Fe-2S protein causative in wolfram syndrome 2. J Mol Biol. 2009;392(1):143–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Paddock ML, Wiley SE, Axelrod HL, Cohen AE, Roy M, Abresch EC, Capraro D, Murphy AN, Nechushtai R, Dixon JE, Jennings PA. MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone. Proc Natl Acad Sci USA. 2007;104(36):14342–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Chen YF, Kao CH, Chen YT, Wang CH, Wu CY, Tsai CY, Liu FC, Yang CW, Wei YH, Hsu MT, Tsai SF, Tsai TF. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev. 2009;23(10):1183–94.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Wu CY, Chen YF, Wang CH, Kao CH, Zhuang HW, Chen CC, Chen LK, Kirby R, Wei YH, Tsai SF, Tsai TF. A persistent level of Cisd2 extends healthy lifespan and delays aging in mice. Hum Mol Genet. 2012;21(18):3956–68.

    Article  PubMed  CAS  Google Scholar 

  9. Chen YF, Wu CY, Kirby R, Kao CH, Tsai TF. A role for the CISD2 gene in lifespan control and human disease. Ann N Y Acad Sci. 2010;1201:58–64.

    Article  PubMed  CAS  Google Scholar 

  10. Chen YF, Wu CY, Kirby R, Kao CH, Tsai TF. Cisd2 mediates mitochondrial integrity and life span in mammals. Autophagy. 2009;5(7):1043–5.

    Article  PubMed  Google Scholar 

  11. Chang NC, Nguyen M, Shore GC. BCL2-CISD2: an ER complex at the nexus of autophagy and calcium homeostasis? Autophagy. 2012;8(5):856–7.

    Article  PubMed  CAS  Google Scholar 

  12. Chang NC, Nguyen M, Germain M, Shore GC. Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J. 2010;29(3):606–18.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Chang NC, Nguyen M, Bourdon J, Risse PA, Martin J, Danialou G, Rizzuto R, Petrof BJ, Shore GC. Bcl-2-associated autophagy regulator Naf-1 required for maintenance of skeletal muscle. Hum Mol Genet. 2012;21(10):2277–87.

    Article  PubMed  CAS  Google Scholar 

  14. Bu X, Rotter JI. Wolfram syndrome: a mitochondrial mediated disorder? Lancet. 1993;342(8871):598–600.

    Article  PubMed  CAS  Google Scholar 

  15. Barrett TG, Bundey SE. Wolfram (DIDMOAD) syndrome. J Med Genet. 1997;34(10):838–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, Shea-Drinkwater M, Kang S, Joyce E, Nicoli J, Benson E, Kunkel LM, Perls T. A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc Natl Acad Sci USA. 2001;98(18):10505–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Sohn YS, Tamir S, Song L, Michaeli D, Matouk I, Conlan AR, Harir Y, Holt SH, Shulaev V, Paddock ML, Hochberg A, Cabanchick IZ, Onuchic JN, Jennings PA, Nechushtai R, Mittler R. NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. PNAS. 2009;110(36):14676–81.

    Article  Google Scholar 

  18. Benedet JL, Bender H, Jones H 3rd, Ngan NY, Pecorelli S. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO Committee on Gynecologic Oncology. Int J Gynaecol Obstet. 2000;70(2):209–62.

    Article  PubMed  CAS  Google Scholar 

  19. Selman TJ, Mann C, Zamora J, Appleyard TL, Khan K. Diagnostic accuracy of tests for lymph node status in primary cervical cancer: a systematic review and meta-analysis. CMAJ. 2008;178(7):855–62.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Esajas MD, Duk JM, De Bruijn HWA, Aalders JG, Willemse PHB, Sluiter W, Pras B, ten Hoor K, Hollema H, van der Zee AG. Clinical value of routine serum squamous cell carcinoma antigen in follow-up of patients with early-stage cervical cancer. J Clin Oncol. 2001;19(19):3960–6.

    PubMed  CAS  Google Scholar 

  21. Pras E, Willemse PHB, Canrinus AA, De Bruijn HWA, Sluiter WJ, Ten Hoor KA, Aalders JG, Szabo BG, de Vries EG. Serum squamous cell carcinoma antigen and CYFRA 21-1 in cervical cancer treatment. Int J Rad Oncol Biol Phys. 2002;52(1):23–32.

    Article  CAS  Google Scholar 

  22. Duk JM, Groenier KH, de Bruijn HW, Hollema H, ten Hoor KA, van der Zee AG, Aalders JG. Pretreatment serum squamous cell carcinoma antigen: a newly identified prognostic factor in early-stage cervical carcinoma. J Clin Oncol. 1996;14(1):111–8.

    PubMed  CAS  Google Scholar 

  23. Lin H, ChangChien CC, Huang EY, Tseng CW, Eng HL, Huang CC. The role of pretreatment squamous cell carcinoma antigen in predicting nodal metastasis in early stage cervical cancer. Acta Obstet Gynecol Scand. 2000;79(2):140–4.

    Article  PubMed  CAS  Google Scholar 

  24. Bolger BS, Dabbas M, Lopes A, Monaghan JM. Prognostic value of preoperative squamous cell carcinoma antigen level in patients surgically treated for cervical carcinoma. Gynecol Oncol. 1997;65(2):309–13.

    Article  PubMed  CAS  Google Scholar 

  25. Juang CM, Wang PH, Yen MS, Lai CR, Ng HT, Yuan CC. Application of tumor markers CEA, TPA, andSCC-Ag in patients with low-risk FIGO stage IBand IIA squamous cell carcinoma of the uterine cervix. Gynecol Oncol. 2000;6(1):103–6.

    Article  Google Scholar 

  26. Gaarenstroom KN, Kenter GG, Bonfrer JM, Korse CM, Van de Vijver MJ, Fleuren GJ, Trimbos JB. Can initial serum cyfra 21-1, SCC antigen, and TPA levels in squamous cell cervical cancer predict lymph node metastases or prognosis? Gynecol Oncol. 2000;77(1):164–70.

    Article  PubMed  CAS  Google Scholar 

  27. van de Lande J, Davelaar EM, von Mensdorff-Pouilly S, Water TJ, Berkhof J, van Baal WM, Kenemans P, Verheijen RH. SCC-Ag, lymph node metastases and sentinel node procedure in early stage squamous cell cervical cancer. Gynecol Oncol. 2009;112(1):119–25.

    Article  PubMed  Google Scholar 

  28. Kim Byoung-Gie. Squamous cell carcinoma antigen in cervical cancer and beyond. J Gynecol Oncol. 2013;24(4):291–2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621–32.

    Article  PubMed  CAS  Google Scholar 

  30. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12(10):685–98.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang J, Yang Z, Xie L, Xu L, Xu D, Liu X. Statins, autophagy and cancer metastasis. Int J Biochem Cell Biol. 2013;45(3):745–52.

    Article  PubMed  CAS  Google Scholar 

  32. Joseph SK, Hajnóczky G. IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis. 2007;12(5):951–68.

    Article  PubMed  CAS  Google Scholar 

  33. Giorgi C, Baldassari F, Bononi A, Bonora M, DeMarchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P. Mitochondrial Ca2+ and apoptosis. Cell Calcium. 2012;52:36–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Giorgi C, Wieckowski MR, Pandolfi PP, Pinton P. Mitochondria associated membranes (MAMs) as critical hubs for apoptosis. Commun Integr Biol. 2011;4(3):334–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Marchi S, Patergnani S, Pinton P. The endoplasmic reticulum–mitochondria connection: one touch, multiple functions. Biochim Biophys Acta. 2013;1837(4):461–9.

    Article  PubMed  Google Scholar 

  36. Decuypere JP, Monaco G, Bultynck G, Missiaen L, De Smedt H, Parys JB. The IP3 receptor–mitochondria connection in apoptosis and autophagy. Biochim Biophys Acta. 2011;1813(5):1003–13.

    Article  PubMed  CAS  Google Scholar 

  37. Rong Y, Distelhorst CW. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol. 2008;70:73–91.

    Article  PubMed  CAS  Google Scholar 

  38. Chen R, Valencia R, Zhong F, McColl KS, Roderick HL, Bootman MD, Berridge MJ, Conway SJ, Holmes AB, Mignery GA, Velez P, Distelhorst CW. Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol. 2004;166(2):193–203.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ. Bax and Bak regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003;300(5616):135–9.

    Article  PubMed  CAS  Google Scholar 

  40. Monaco G, Decrock E, Akl H, Ponsaerts R, Vervliet T, Luyten T, De Maeyer M, Missiaen L, Distelhorst CW, De Smedt H, Parys JB, Leybaert L, Bultynck G. Selective regulation of IP3-receptor-mediated Ca2 + signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl. Cell Death Differ. 2012;19(2):295–309.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Cheng EH, Levine B, Boise LH, Thompson CB, Hardwick JM. Bax-independent inhibition of apoptosis by Bcl-Xl. Nature. 1996;379(6565):554–6.

    Article  PubMed  CAS  Google Scholar 

  42. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2(3):183–92.

    Article  PubMed  CAS  Google Scholar 

  43. Liu L, Yu X, Guo X, Tian Z, Su M, Long Y, Huang C, Zhou F, Liu M, Wu X, Wang X. miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep. 2012;5(3):753–60.

    PubMed  CAS  Google Scholar 

  44. Dimitrakakis C, Kymionis G, Diakomanolis E, Papaspyrou I, Rodolakis A, Arzimanoglou I, Leandros E, Michalas S. The possible role of p53 and bcl-2 expression in cervical carcinomas and their premalignant lesions. Gynecol Oncol. 2000;77(1):129–36.

    Article  PubMed  CAS  Google Scholar 

  45. Cory S, Adams JM. The BCL2 family: regulators of the cellular life-or-death switch. Nat Rev. 2002;2(9):647–56.

    Article  CAS  Google Scholar 

  46. Mayo MW, Baldwin AS. The transcription factor NF-κB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta. 2000;1470(2):M55–62.

    PubMed  CAS  Google Scholar 

  47. Chou RH, Hsieh SC, Yu YL, Huang MH, Huang YC, Hsieh YH. Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulating urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-κB signaling pathway. PLoS One. 2013;8(8):1–12.

    Google Scholar 

  48. Yan S, Wang Y, Yang Q, Li X, Kong X, Zhang N, Yuan C, Yang N, Kong B. Low-dose radiation-induced epithelial-mesenchymal transition through NF-κB in cervical cancer cells. Int J Oncol. 2013;42(5):1801–6.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from The Natural Science Foundation of Guangdong Province (S2013010015552, S2011010003516).

Conflict of interest

The authors declare that they have no known conflict of interest.

Ethics statement

This study complied with the Helsinki Declaration and was approved by the Institutional Ethical Board (IRB) in the First Affiliated Hospital of Sun Yat-sen University of China. Through the surgery consent form, patients were informed that the resected specimens were kept by our hospital and might be used for scientific research and that their privacy would be maintained. Follow-up survival data were collected retrospectively through medical-record analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Xia, M., Wang, J. et al. CISD2 expression is a novel marker correlating with pelvic lymph node metastasis and prognosis in patients with early-stage cervical cancer. Med Oncol 31, 183 (2014). https://doi.org/10.1007/s12032-014-0183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0183-5

Keywords

Navigation