Skip to main content
Log in

Regulation of cellular iron metabolism and its implications in lung cancer progression

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Iron is essential for life and is involved in numerous metabolic processes including cell growth and proliferation. However, excess iron in the body raises the risk of developing cancer due to its capacity to engage in redox cycling and free radical production. Therefore, iron can contribute to both carcinogenesis and tumor growth. Both epidemiologic and laboratory studies have demonstrated that the effects of iron overload are associated with the tumorigenesis of lung cancer and growth of lung cancer cells. In particular, the discovery of hepcidin and several iron transporters in the past decade may warrant reconsideration of the role of iron in carcinogenesis and tumor cell proliferation in lung cancer. Pathways of iron uptake, storage, efflux, and regulation are all disturbed in cancer, suggesting that reprogramming of iron metabolism is a critical aspect of tumor cell survival. Although these pathways in lung cancer have been identified and extensively studied, many issues on the metabolic processes of iron in lung cancer cells have not been addressed. Targeting metabolic pathways of iron may provide new tools for lung cancer prognosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tandon M, Gokul K, Ali SA, et al. Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells. Mol Cancer. 2012;11:27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ridge CA, McErlean AM, Ginsberg MS. Epidemiology of lung cancer. Semin Intervent Radiol. 2013;30:93–8.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fuster LM, Sandler AB. Select clinical trials of erlotinib (OSI-774) in non-small-cell lung cancer with emphasis on phase III outcomes. Clin Lung Cancer. 2004;6(Suppl 1):S24–9.

    Article  CAS  PubMed  Google Scholar 

  4. Vijayalakshmi R, Krishnamurthy A. Targetable, “driver” mutations in non small cell lung cancer. Indian J Surg Oncol. 2011;2:178–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Domvri K, Zarogoulidis P, Darwiche K, et al. Molecular targeted drugs and biomarkers in NSCLC, the evolving role of individualized therapy. J Cancer. 2013;4:736–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wang SJ, Gao C, Chen BA. Advancement of the study on iron metabolism and regulation in tumor cells. Chin J Cancer. 2010;29:451–5.

    Article  PubMed  Google Scholar 

  7. Kabat GC, Rohan TE. Does excess iron play a role in breast carcinogenesis? An unresolved hypothesis. Cancer Causes Control. 2007;18:1047–53.

    Article  PubMed  Google Scholar 

  8. Torti SV, Torti FM. Cellular iron metabolism in prognosis and therapy of breast cancer. Crit Rev Oncog. 2013;18:435–48.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Wild P, Bourgkard E, Paris C. Lung cancer and exposure to metals: the epidemiological evidence. Methods Mol Biol. 2009;472:139–67.

    Article  CAS  PubMed  Google Scholar 

  10. Palmer S. Diet, nutrition, and cancer. Prog Food Nutr Sci. 1985;9:283–341.

    CAS  PubMed  Google Scholar 

  11. Steegmann-Olmedillas JL. The role of iron in tumour cell proliferation. Clin Transl Oncol. 2011;13:71–6.

    Article  CAS  PubMed  Google Scholar 

  12. Yu Y, Gutierrez E, Kovacevic Z, et al. Iron chelators for the treatment of cancer. Curr Med Chem. 2012;19:2689–702.

    Article  CAS  PubMed  Google Scholar 

  13. Yu Y, Suryo Rahmanto Y, Richardson DR. Bp44mT: an orally active iron chelator of the thiosemicarbazone class with potent anti-tumour efficacy. Br J Pharmacol. 2012;165:148–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Andrews NC. Understanding heme transport. N Engl J Med. 2005;353:2508–9.

    Article  CAS  PubMed  Google Scholar 

  15. Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13:342–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kukulj S, Jaganjac M, Boranic M, Krizanac S, Santic Z, Poljak-Blazi M. Altered iron metabolism, inflammation, transferrin receptors, and ferritin expression in non-small-cell lung cancer. Med Oncol. 2010;27:268–77.

    Article  CAS  PubMed  Google Scholar 

  17. Alemán MR, Santolaria F, Batista N, et al. Leptin role in advanced lung cancer. A mediator of the acute phase response or a marker of the status of nutrition? Cytokine. 2002;19:21–6.

    Article  PubMed  Google Scholar 

  18. Yildirim A, Meral M, Kaynar H, Polat H, Ucar EY. Relationship between serum levels of some acute-phase proteins and stage of disease and performance status in patients with lung cancer. Med Sci Monit. 2007;13:CR195–200.

    CAS  PubMed  Google Scholar 

  19. Niklinski J, Furman M. Clinical tumour markers in lung cancer. Eur J Cancer Prev. 1995;4:129–38.

    Article  CAS  PubMed  Google Scholar 

  20. Akerstrom B, Flower DR, Salier JP. Lipocalins: unity in diversity. Biochim Biophys Acta. 2000;1482:1–8.

    Article  CAS  PubMed  Google Scholar 

  21. Devireddy LR, Gazin C, Zhu X, Green MR. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell. 2005;123:1293–305.

    Article  CAS  PubMed  Google Scholar 

  22. Devireddy LR, Hart DO, Goetz DH, Green MR. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell. 2010;141:1006–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Shiiba M, Saito K, Fushimi K, et al. Lipocalin-2 is associated with radioresistance in oral cancer and lung cancer cells. Int J Oncol. 2013;42:1197–204.

    PubMed  Google Scholar 

  24. Wu MF, Hsiao YM, Huang CF, et al. Genetic determinants of pemetrexed responsiveness and nonresponsiveness in non-small cell lung cancer cells. J Thorac Oncol. 2010;5:1143–51.

    Article  PubMed  Google Scholar 

  25. Hanai J, Mammoto T, Seth P, et al. Lipocalin 2 diminishes invasiveness and metastasis of Ras-transformed cells. J Biol Chem. 2005;280:13641–7.

    Article  CAS  PubMed  Google Scholar 

  26. Kakhlon O, Gruenbaum Y, Cabantchik ZI. Ferritin expression modulates cell cycle dynamics and cell responsiveness to H_ras-induced growth via expansion of the labile iron pool. Biochem J. 2002;363:431–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Milman N, Pedersen LM. The serum ferritin concentration is a significant prognostic indicator of survival in primary lung cancer. Oncol Rep. 2002;9:193–8.

    CAS  PubMed  Google Scholar 

  28. Koc M, Taysi S, Sezen O, Bakan N. Levels of some acute-phase proteins in the serum of patients with cancer during radiotherapy. Biol Pharm Bull. 2003;26:1494–7.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang F, Wang W, Tsuji Y, Torti SV, Torti FM. Post-transcriptional modulation of iron homeostasis during p53-dependent growth arrest. J Biol Chem. 2008;283:33911–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000;275:19906–12.

    Article  CAS  PubMed  Google Scholar 

  31. Ganz T, Nemeth E. Hepcidin and disorders of iron metabolism. Annu Rev Med. 2011;62:347–60.

    Article  CAS  PubMed  Google Scholar 

  32. Ganz T, Nemeth E. The hepcidin–ferroportin system as a therapeutic target in anemias and iron overload disorders. Hematol Am Soc Hematol Educ Progr. 2011;2011:538–42.

    Article  Google Scholar 

  33. Pinnix ZK, Miller LD, Wang W, et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med. 2010;2:43ra56.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Wang Q, Zhou J, Zhong D, Wang Q, Huang J. Ferroportin in the progression and prognosis of hepatocellular carcinoma. Eur J Med Res. 2013;18:59.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Pogribny IP. Ferroportin and hepcidin: a new hope in diagnosis, prognosis, and therapy for breast cancer. Breast Cancer Res. 2010;12:314.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Brookes MJ, Hughes S, Turner FE, et al. Modulation of iron transport proteins in human colorectal carcinogenesis. Gut. 2006;55:1449–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.

    Article  CAS  PubMed  Google Scholar 

  38. Vokurka M, Krijt J, Vávrová J, Nečas E. Hepcidin expression in the liver of mice with implanted tumour reacts to iron deficiency, inflammation and erythropoietin administration. Folia Biol (Praha). 2011;57:248–54.

    CAS  Google Scholar 

  39. Schmidt PJ, Toran PT, Giannetti AM, Bjorkman PJ, Andrews NC. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab. 2008;7:205–14.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Gao J, Chen J, Kramer M, Tsukamoto H, Zhang AS, Enns CA. Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell Metab. 2009;9:217–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ramey G, Deschemin JC, Vaulont S. Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin pathways is required for the induction of hepcidin by holotransferrin in primary mouse hepatocytes. Haematologica. 2009;94:765–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108:3204–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood. 2008;112:4292–7.

    Article  CAS  PubMed  Google Scholar 

  44. Bartnikas TB, Andrews NC, Fleming MD. Transferrin is a major determinant of hepcidin expression in hypotransferrinemic mice. Blood. 2011;117:630–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Pak M, Lopez MA, Gabayan V, Ganz T, Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108:3730–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kamai T, Tomosugi N, Abe H, Arai K, Yoshida K. Increased serum hepcidin-25 level and increased tumor expression of hepcidin mRNA are associated with metastasis of renal cell carcinoma. BMC Cancer. 2009;9:270.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kijima H, Sawada T, Tomosugi N, Kubota K. Expression of hepcidin mRNA is uniformly suppressed in hepatocellular carcinoma. BMC Cancer. 2008;8:167.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Ward DG, Roberts K, Stonelake P, et al. SELDI-TOF-MS determination of hepcidin in clinical samples using stable isotope labelled hepcidin as an internal standard. Proteome Sci. 2008;6:28.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Rivera S, Liu L, Nemeth E, Gabayan V, Sorensen OE, Ganz T. Hepcidin excess induces the sequestration of iron and exacerbates tumor-associated anemia. Blood. 2005;105:1797–802.

    Article  CAS  PubMed  Google Scholar 

  50. Chen Q, Wang L, Ma Y, Wu X, Jin L, Yu F. Increased hepcidin expression in non-small cell lung cancer tissue and serum is associated with clinical stage. Thorac Cancer. 2014;5:14–24.

    Article  CAS  Google Scholar 

  51. Lien SC, Chang SF, Lee PL, et al. Mechanical regulation of cancer cell apoptosis and autophagy: roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. Biochim Biophys Acta. 2013;1833:3124–33.

    Article  CAS  PubMed  Google Scholar 

  52. Langenfeld E, Hong CC, Lanke G, Langenfeld J. Bone morphogenetic protein type I receptor antagonists decrease growth and induce cell death of lung cancer cell lines. PLoS ONE. 2013;8:e61256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010;147:35–51.

    Article  CAS  PubMed  Google Scholar 

  54. Choi YJ, Kim ST, Park KH, et al. The serum bone morphogenetic protein-2 level in non-small-cell lung cancer patients. Med Oncol. 2012;29:582–8.

    Article  CAS  PubMed  Google Scholar 

  55. Nickel J, Sebald W, Groppe JC, Mueller TD. Intricacies of BMP receptor assembly. Cytokine Growth Factor Rev. 2009;20:367–77.

    Article  CAS  PubMed  Google Scholar 

  56. Hsu YL, Huang MS, Yang CJ, Hung JY, Wu LY, Kuo PL. Lung tumor-associated osteoblast-derived bone morphogenetic protein-2 increased epithelial-to-mesenchymal transition of cancer by Runx2/Snail signaling pathway. J Biol Chem. 2011;286:37335–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Babitt JL, Huang FW, Wrighting DM, et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet. 2006;38:531–9.

    Article  CAS  PubMed  Google Scholar 

  58. Papanikolaou G, Samuels ME, Ludwig EH, et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet. 2004;36:77–82.

    Article  CAS  PubMed  Google Scholar 

  59. Lin L, Nemeth E, Goodnough JB, Thapa DR, Gabayan V, Ganz T. Soluble hemojuvelin is released by proprotein convertase-mediated cleavage at a conserved polybasic RNRR site. Blood Cells Mol Dis. 2008;40:122–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Perry MJ, McDougall KE, Hou SC, Tobias JH. Impaired growth plate function in bmp-6 null mice. Bone. 2008;42:216–25.

    Article  CAS  PubMed  Google Scholar 

  61. Niederkofler V, Salie R, Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest. 2005;115:2180–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Ramos E, Kautz L, Rodriguez R, et al. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice. Hepatology. 2011;53:1333–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Xia Y, Babitt JL, Sidis Y, Chung RT, Lin HY. Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and receptors independently of neogenin. Blood. 2008;111:5195–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Zhang AS, Anderson SA, Wang J, et al. Suppression of hepatic hepcidin expression in response to acute iron deprivation is associated with an increase of matriptase-2 protein. Blood. 2011;117:1687–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Steinbicker AU, Bartnikas TB, Lohmeyer LK, et al. Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice. Blood. 2011;118:4224–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Salahudeen AA, Bruick RK. Maintaining mammalian iron and oxygen homeostasis: sensors, regulation, and cross-talk. Ann N Y Acad Sci. 2009;1177:30–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Le Page C, Puiffe ML, Meunier L, et al. BMP-2 signaling in ovarian cancer and its association with poor prognosis. J Ovarian Res. 2009;2:4.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Park Y, Kang MH, Seo HY, et al. Bone morphogenetic protein-2 levels are elevated in the patients with gastric cancer and correlate with disease progression. Med Oncol. 2010;27:1192–9.

    Article  CAS  PubMed  Google Scholar 

  69. Gupta GP, Perk J, Acharyya S, et al. ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc Natl Acad Sci USA. 2007;104:19506–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Swarbrick A, Roy E, Allen T, Bishop JM. Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response. Proc Natl Acad Sci USA. 2008;105:5402–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Langenfeld EM, Kong Y, Langenfeld J. Bone morphogenetic protein-2-induced transformation involves the activation of mammalian target of rapamycin. Mol Cancer Res. 2005;3:679–84.

    Article  CAS  PubMed  Google Scholar 

  72. Raida M, Clement JH, Leek RD, Ameri K, Bicknell R, Niederwieser D, Harris AL. Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. J Cancer Res Clin Oncol. 2005;131:741–50.

    Article  CAS  PubMed  Google Scholar 

  73. Rothhammer T, Bataille F, Spruss T, Eissner G, Bosserhoff AK. Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene. 2007;26:4158–70.

    Article  CAS  PubMed  Google Scholar 

  74. Fang WT, Fan CC, Li SM, et al. Downregulation of a putative tumor suppressor BMP4 by SOX2 promotes growth of lung squamous cell carcinoma. Int J Cancer. 2014. doi:10.1002/ijc.28734.

    Google Scholar 

  75. Kraunz KS, Nelson HH, Liu M, Wiencke JK, Kelsey KT. Interaction between the bone morphogenetic proteins and Ras/MAP-kinase signalling pathways in lung cancer. Br J Cancer. 2005;93:949–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Fenglei Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Wang, L. & Yu, F. Regulation of cellular iron metabolism and its implications in lung cancer progression. Med Oncol 31, 28 (2014). https://doi.org/10.1007/s12032-014-0028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0028-2

Keywords

Navigation