Skip to main content

Advertisement

Log in

Elevated DLL4 expression is correlated with VEGF and predicts poor prognosis of nasopharyngeal carcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Delta-like ligand 4 (DLL4), one of the transmembranous Notch ligands, is upregulated at the site of tumor growth, particularly during tumor angiogenesis. Expression pattern of DLL4 in nasopharyngeal carcinoma (NPC) and the clinical and prognostic significance remain unclear. In this study, immunohistochemical analysis (IHC) was used to examine the protein level of DLL4 in NPC tissues from two independent cohorts. In the testing cohort (311 cases), we applied the X-tile program software able to assess the optimal cutoff points for biomarkers in order to accurately classify patients according to clinical outcome. In the validation cohort (113 cases), the cutoff score derived from X-title analysis was investigated to determine the association of DLL4 expression with disease-specific survival (DFS). Our results showed that high expression of DLL4 was observed in 134 of 313 (42.8 %) in the testing cohort and 58 of 113 (43.6 %) in the validation cohort. High expression of DLL4 independently predicted poorer disease-specific survival, as evidenced by univariate and multivariate analysis (P < 0.05). Moreover, DLL4 expression was significantly elevated in distant NPC metastases relative to primary NPC tumors (P = 0.001). Importantly, we found a significant positive relationship between DLL4 and vascular endothelial growth factor (VEGF) (P < 0.001). Patients with dual elevated DLL4 and VEGF expression displayed a significant overall survival disadvantage compared to those with dual low expression (P < 0.05). These findings provide evidence that high expression of DLL4 serves as an independent predictor of poor prognosis in NPC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15:1765–77.

    Article  PubMed  CAS  Google Scholar 

  2. Wei WI, Sham JS. Nasopharyngeal carcinoma. Lancet. 2005;365:2041–54.

    Article  PubMed  Google Scholar 

  3. Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12:421–9.

    Article  PubMed  Google Scholar 

  4. Farias TP, Dias FL, Lima RA, et al. Prognostic factors and outcome for nasopharyngeal carcinoma. Arch Otolaryngol Head Neck Surg. 2003;129:794–9.

    Article  PubMed  Google Scholar 

  5. Ahmad A, Stefani S. Distant metastases of nasopharyngeal carcinoma: a study of 256 male patients. J Surg Oncol. 1986;33:194–7.

    Article  PubMed  CAS  Google Scholar 

  6. Petrovich Z, Cox JD, Roswit B, et al. Advanced carcinoma of the nasopharynx. A clinical study of 274 patients. Radiology. 1982;144:905–8.

    PubMed  CAS  Google Scholar 

  7. Geara FB, Sanguineti G, Tucker SL, et al. Carcinoma of the nasopharynx treated by radiotherapy alone: determinants of distant metastasis and survival. Radiother Oncol. 1997;43:53–61.

    Article  PubMed  CAS  Google Scholar 

  8. Feng BJ, Huang W, Shugart YY, et al. Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nat Genet. 2002;31:395–9.

    PubMed  CAS  Google Scholar 

  9. Bei JX, Li Y, Jia WH, et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet. 2010;42:599–603.

    Article  PubMed  CAS  Google Scholar 

  10. Song LB, Li J, Liao WT, et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest. 2009;119:3626–36.

    Article  PubMed  CAS  Google Scholar 

  11. Cheng AL, Huang WG, Chen ZC, et al. Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res. 2008;14:435–45.

    Article  PubMed  CAS  Google Scholar 

  12. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389–95.

    Article  PubMed  CAS  Google Scholar 

  13. Shawber CJ, Kitajewski J. Notch function in the vasculature: insights from zebrafish, mouse and man. BioEssays. 2004;26:225–34.

    Article  PubMed  CAS  Google Scholar 

  14. Gridley T. Notch signaling during vascular development. Proc Natl Acad Sci USA. 2001;98:5377–8.

    Article  PubMed  CAS  Google Scholar 

  15. Shutter JR, Scully S, Fan W, et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev. 2000;14:1313–8.

    PubMed  CAS  Google Scholar 

  16. Rao PK, Dorsch M, Chickering T, et al. Isolation and characterization of the notch ligand delta4. Exp Cell Res. 2000;260:379–86.

    Article  PubMed  CAS  Google Scholar 

  17. Patel NS, Li JL, Generali D, et al. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 2005;65:8690–7.

    Article  PubMed  CAS  Google Scholar 

  18. Williams CK, Li JL, Murga M, et al. Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood. 2006;107:931–9.

    Article  PubMed  CAS  Google Scholar 

  19. Liu ZJ, Shirakawa T, Li Y, et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol. 2003;23:14–25.

    Article  PubMed  Google Scholar 

  20. Noguera-Troise I, Daly C, Papadopoulos NJ, et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006;444:1032–7.

    Article  PubMed  CAS  Google Scholar 

  21. Ridgway J, Zhang G, Wu Y, et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 2006;444:1083–7.

    Article  PubMed  CAS  Google Scholar 

  22. Li JL, Sainson RC, Shi W, et al. Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res. 2007;67:11244–53.

    Article  PubMed  CAS  Google Scholar 

  23. Li JL, Sainson RC, Oon CE, et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res. 2011;71:6073–83.

    Article  PubMed  CAS  Google Scholar 

  24. Martinez JC, Muller MM, Turley H, et al. Nuclear and membrane expression of the angiogenesis regulator delta-like ligand 4 (DLL4) in normal and malignant human tissues. Histopathology. 2009;54:598–606.

    Article  PubMed  Google Scholar 

  25. Schadler KL, Zweidler-McKay PA, et al. Delta-like ligand 4 plays a critical role in pericyte/vascular smooth muscle cell formation during vasculogenesis and tumor vessel expansion in Ewing’s sarcoma. Clin Cancer Res. 2010;16:848–56.

    Article  PubMed  CAS  Google Scholar 

  26. Patel NS, Dobbie MS, Rochester M, et al. Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer. Clin Cancer Res. 2006;12:4836–44.

    Article  PubMed  CAS  Google Scholar 

  27. Engin F, Bertin T, Ma O, et al. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet. 2009;18(8):1464–70.

    Article  PubMed  CAS  Google Scholar 

  28. Jubb AM, Soilleux EJ, Turley H, et al. Expression of vascular notch ligand delta-like 4 and inflammatory markers in breast cancer. Am J Pathol. 2010;176:2019–28.

    Article  PubMed  Google Scholar 

  29. Donnem T, Andersen S, Al-Shibli K, et al. Prognostic impact of Notch ligands and receptors in nonsmall cell lung cancer: coexpression of Notch-1 and vascular endothelial growth factor-A predicts poor survival. Cancer. 2010;116:5676–85.

    Article  PubMed  Google Scholar 

  30. Jubb AM, Miller KD, Rugo HS, et al. Impact of exploratory biomarkers on the treatment effect of bevacizumab in metastatic breast cancer. Clin Cancer Res. 2011;17:372–81.

    Article  PubMed  CAS  Google Scholar 

  31. Jubb AM, Turley H, Moeller HC, et al. Expression of delta-like ligand 4 (Dll4) and markers of hypoxia in colon cancer. Br J Cancer. 2009;101:1749–57.

    Article  PubMed  CAS  Google Scholar 

  32. Li YH, Hu CF, Shao Q, et al. Elevated expressions of survivin and VEGF protein are strong independent predictors of survival in advanced nasopharyngeal carcinoma. J Transl Med. 2008;6:1.

    Article  PubMed  Google Scholar 

  33. Min H, Hong M, Ma J, et al. A new staging system for nasopharyngeal carcinoma in China. Int J Radiat Oncol Biol Phys. 1994;30:1037–42.

    Article  PubMed  CAS  Google Scholar 

  34. Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res. 2004;10:7252–9.

    Article  PubMed  CAS  Google Scholar 

  35. Raeside DE. Monte Carlo principles and applications. Phys Med Biol. 1976;21:181–97.

    Article  PubMed  CAS  Google Scholar 

  36. Chua DT, Ma J, Sham JS, et al. Long-term survival after cisplatin-based induction chemotherapy and radiotherapy for nasopharyngeal carcinoma: a pooled data analysis of two phase III trials. J Clin Oncol. 2005;23:1118–24.

    Article  PubMed  CAS  Google Scholar 

  37. Hanahan D. Signaling vascular morphogenesis and maintenance. Science. 1997;277:48–50.

    Article  PubMed  CAS  Google Scholar 

  38. Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol. 1992;3:65–71.

    PubMed  CAS  Google Scholar 

  39. Hoey T, Yen WC, Axelrod F, et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell. 2009;5:168–77.

    Article  PubMed  CAS  Google Scholar 

  40. Li JL, Harris AL. Crosstalk of VEGF and Notch pathways in tumour angiogenesis: therapeutic implications. Front Biosci. 2009;14:3094–110.

    Article  PubMed  CAS  Google Scholar 

  41. Yan M, Plowman GD. Delta-like 4/Notch signaling and its therapeutic implications. Clin Cancer Res. 2007;13:7243–6.

    Article  PubMed  CAS  Google Scholar 

  42. Chen FH, Chiang CS, Wang CC, et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin Cancer Res. 2009;15:1721–9.

    Article  PubMed  CAS  Google Scholar 

  43. Hui EP, Chan AT, Pezzella F, et al. Coexpression of hypoxia-inducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res. 2002;8:2595–604.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by National High Technology Research and Development Program of China (863 Program) (2012AA02A501); the China State Key Basic Research Project (2011CB504805).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Yong Shao.

Additional information

Jia-Xing Zhang, Man-Bo Cai and Xiao-Pai Wang: These authors made equal contributions and are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JX., Cai, MB., Wang, XP. et al. Elevated DLL4 expression is correlated with VEGF and predicts poor prognosis of nasopharyngeal carcinoma. Med Oncol 30, 390 (2013). https://doi.org/10.1007/s12032-012-0390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-012-0390-x

Keywords

Navigation