Skip to main content

Advertisement

Log in

Cross-reactivity of Antibodies Directed to the Gram-Negative Bacterium Neisseria gonorrhoeae With Heat Shock Protein 60 and ATP-Binding Protein Correlates to Reduced Mitochondrial Activity in HIBCPP Choroid Plexus Papilloma Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Antibacterial antibodies can cause neurologic side-effects by cross-reactivity with cellular antigens. Here we investigated interactions of antibodies to Neisseria gonorrhoeae (α-NG) - maternal infections by which increases the offspring’s risk for later psychosis—with HIBCPP cells, a cell culture model of choroid plexus epithelium. Immunocytochemistry and Western blotting with α-NG, revealed organelle-like intracellular staining in HIBCPP cells, and labelling of several immunoreactive bands in cellular protein. Two-dimensional Western blotting revealed several immunopositive spots, most prominent of which were identified by mass spectrometry as mitochondrially localized proteins heat shock protein 60 (Hsp60) and ATP-binding protein β-subunit (ATPB). Similarly α-NG interacted with commercial samples of these proteins as revealed by Western blotting. Three alternative methods (JC-1, Janus green and MTT staining) revealed α-NG to cause in HIBCPP cells a significant decrease in mitochondrial activity, which could be reverted by neuroleptic drugs. Immunoreactivity of α-NG with choroid plexus epithelium in human post mortem samples suggests in vivo relevance of these findings. Finally, distinctly different staining patterns of antibodies against Neisseria meningitidis (α-NM), confirmed antibody specificity. To our knowledge this is the first report that α-NG cross-reactivity with Hsp60 and ATPB impairs mitochondrial activity in choroid plexus epithelial cells, pathogenetic relevance of which needs further clarification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anglin RE, Garside SL, Tarnopolsky MA, Mazurek MF, Rosebush PI (2012) The psychiatric manifestations of mitochondrial disorders: a case and review of the literature. J Clin Psychiatry 73:506–512

    Article  PubMed  Google Scholar 

  • Anthony SG, Schipper HM, Tavares R, Hovanesian V, Cortez SC, Stopa EG, Johanson CE (2003) Stress protein expression in the Alzheimer-diseased choroid plexus. J Alzheimers Dis 5:171–177

    CAS  PubMed  Google Scholar 

  • Asif AR, Oellerich M, Amstrong VW, Gross U, Reichard U (2010) Analysis of the cellular Aspergillus fumigatus proteome that reacts with sera from rabbits developing an acquired immunity after experimental aspergillosis. Electrophoresis 31:1947–1958

    Article  CAS  PubMed  Google Scholar 

  • Babulas V, Factor-Litvak P, Goetz R, Schaefer CA, Brown AS (2006) Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am J Psychiatry 163:927–929

    Article  PubMed  Google Scholar 

  • Bae TJ, Kim MS, Kim JW, Kim BW, Choo HJ, Lee JW, Kim KB, Lee CS, Kim JH, Chang SY, Kang CY, Lee SW, Ko YG (2004) Lipid raft proteome reveals ATP synthase complex in the cell surface. Proteomics 4:3536–3548

    Article  CAS  PubMed  Google Scholar 

  • Berg K, Hansen MB, Nielsen SE (1990) A new sensitive bioassay for precise quantification of interferon activity as measured via the mitochondrial dehydrogenase function in cells (MTT-method). APMIS 1990(982):156–162

    Article  Google Scholar 

  • Bini L, Pacini S, Liberatori S, Valensin S, Pellegrini M, Raggiaschi R, Pallini V, Baldari CT (2003) Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering. Biochem J 369:301–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bollag DM, Edelstein SJ (1994) Isoelectric focusing and two dimensional gel electrophoresis. In: Protein Methods, Chapter 7.Wiley-Liss, Inc.

  • Buckman JF, Reynolds IJ (2001) Spontaneous changes in mitochondrial membrane potential in cultured neurons. J Neurosci 21:5054–5065

    CAS  PubMed  Google Scholar 

  • Bueno D, Garcia PM, Fernandez J (2014) The embryonic blood cerebrospinal fluid barrier function before the formation of the fetal choroid plexus: role in cerebrospinal fluid formation and homeostasis. Croat Med J 55:306–316

    Article  PubMed Central  PubMed  Google Scholar 

  • Campbell GR, Kraytsberg Y, Krishnan KJ, Ohno N, Ziabreva I, Reeve A, Trapp BD, Newcombe J, Reynolds R, Lassmann H, Khrapko K, Turnbull DM, Mahad DJ (2012) Clonally expanded mitochondrial DNA deletions within the choroid plexus in multiple sclerosis. Acta Neuropathol 124:209–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casademont J, Garrabou G, Miró O, López S, Pons A, Bernardo M, Cardellach F (2007) Neuroleptic treatment effect on mitochondrial electron transport chain: peripheral blood mononuclear cells analysis in psychotic patients. J Clin Psychopharmacol 27:284–288

    Article  CAS  PubMed  Google Scholar 

  • Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29:311–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Contreras-Shannon V, Heart DL, Paredes RM, Navaira E, Catano G, Maffi SK, Walss-Bass C (2013) Clozapine-induced mitochondria alterations and inflammation in brain and insulin-responsive cells. PLoS One 8, e59012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cooperstein SJ, Lazarow A (1953) Studies on the mechanism of Janus green B staining of mitochondria. Exp Cell Res 5:82–97

    Article  CAS  PubMed  Google Scholar 

  • Cornford EM, Varesi JB, Hyman S, Damian RT, Raleigh MJ (1997) Mitochondrial content of choroid plexus epithelium. Exp Brain Res 116:399–405

    Article  CAS  PubMed  Google Scholar 

  • Cossu D, Cocco E, Paccagnini D, Masala S, Ahmed N, Frau J, Marrosu MG, Sechi LA (2011) Association of Mycobacterium avium subsp. paratuberculosis with multiple sclerosis in Sardinian patients. PLoS One 6, e18482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coulombe PA, Wong P (2004) Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 6:699–706

    Article  CAS  PubMed  Google Scholar 

  • Dahm L, Klugmann F, Gonzalez-Algaba A, Reuss B (2010) Tamoxifen and raloxifene modulate gap junction coupling during early phases of retinoic acid-dependent neuronal differentiation of NTera2/D1 cells. Cell Biol Toxicol 26:579–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dale RC, Brilot F (2012) Autoimmune basal ganglia disorders. J Child Neurol 27:1470–1481

    Article  PubMed  Google Scholar 

  • Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93:1847–1892

    Article  CAS  PubMed  Google Scholar 

  • Das B, Mondragon MO, Sadeghian M, Hatcher VB, Norin AJ (1994) A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. J Exp Med 180:273–281

    Article  CAS  PubMed  Google Scholar 

  • Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, Zickermann V, Kühlbrandt W (2011) Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci U S A 108:14121–14126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deitiker P, Ashizawa T, Atassi MZ (2000) Antigen mimicry in autoimmune disease. Can immune responses to microbial antigens that mimic acetylcholine receptor act as initial triggers of Myasthenia gravis? Hum Immunol 61:255–265

    Article  CAS  PubMed  Google Scholar 

  • Dobbs RJ, Dobbs SM, Weller C, Bjarnason IT, Oxlade NL, Charlett A, Al-Janabi MA, Kerwin RW, Mahler RF, Price AB (2005) Role of chronic infection and inflammation in the gastrointestinal tract in the etiology and pathogenesis of idiopathic parkinsonism. Part 1: eradication of Helicobacter in the cachexia of idiopathic parkinsonism. Helicobacter 10:267–275

    Article  CAS  PubMed  Google Scholar 

  • Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–64

    Article  Google Scholar 

  • Dziegielewska KM, Evans CA, Malinowska DH, Møllgård K, Reynolds JM, Reynolds ML et al (1979) Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. J Physiol 292:207–231

  • Ek CJ, Habgood MD, Dziegielewska KM, Potter A, Saunders NR (2001) Permeability and route of entry for lipid-insoluble molecules across brain barriers in developing Monodelphis domestica. J Physiol 536:841–853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elfaitouri A, Herrmann B, Bölin-Wiener A, Wang Y, Gottfries CG, Zachrisson O, Pipkorn R, Rönnblom L, Blomberg J (2013) Epitopes of microbial and human heat shock protein 60 and their recognition in myalgic encephalomyelitis. PLoS One 8, e81155

    Article  PubMed Central  PubMed  Google Scholar 

  • Engelhardt B (2003) Development of the blood-brain barrier. Cell Tissue Res 314:119–129

    Article  CAS  PubMed  Google Scholar 

  • Ferguson RK, Woodbury DM (1969) Penetration of 1 4C-inulin and 14C-sucrose into brain, cerebrospinal fluid, and skeletal muscle of developing rats. Exp Brain Res 7:181–194

  • Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279:514–519

    Article  CAS  PubMed  Google Scholar 

  • Gordon N (2008) Cerebral folate deficiency. Dev Med Child Neurol 51:180–182

    Article  Google Scholar 

  • Gründler T, Quednau N, Stump C, Orian-Rousseau V, Ishikawa H, Wolburg H, Schroten H, Tenenbaum T, Schwerk C (2013) The surface proteins InlA and InlB are interdependently required for polar basolateral invasion by Listeria monocytogenes in a human model of the blood-cerebrospinal fluid barrier. Microbes Infect 15:291–301

    Article  PubMed  Google Scholar 

  • Gubert C, Stertz L, Pfaffenseller B, Panizzutti BS, Rezin GT, Massuda R, Streck EL, Gama CS, Kapczinski F, Kunz M (2013) Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. J Psychiatr Res 47:1396–1402

    Article  PubMed  Google Scholar 

  • Guy J (2008) Optic nerve degeneration in experimental autoimmune encephalomyelitis. Ophthalmic Res 40:212–216

    Article  PubMed  Google Scholar 

  • Habgood MD, Knott GW, Dziegielewska KM, Saunders NR (1993) The nature of the decrease in blood-cerebrospinal fluid barrier exchange during postnatal brain development in the rat. J Physiol 468:73–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henkel AW, Bieger SC (1994) Quantification of proteins dissolved in an electrophoresis sample buffer. Anal Biochem 223:329–331

    Article  CAS  PubMed  Google Scholar 

  • Hornig M (2013) The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Curr Opin Rheumatol 25:488–795

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata I, Ishiwata C, Ishiwata E, Sato Y, Kiguchi K, Tachibana T, Hashimoto H, Ishikawa H (2005) Establishment and characterization of a human malignant choroid plexus papilloma cell line (HIBCPP). Hum Cell 18:67–72

    Article  PubMed  Google Scholar 

  • Johanson CE, Stopa EG, McMillan PN (2011) The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 686:101–131

    Article  CAS  PubMed  Google Scholar 

  • Johansson PA (2014) The choroid plexuses and their impact on developmental neurogenesis. Front Neurosci 8, e340

    Article  Google Scholar 

  • Kilidireas K, Latov N, Strauss DH, Gorig AD, Hashim GA, Gorman JM, Sadiq SA (1992) Antibodies to the human 60 kDa heat-shock protein in patients with schizophrenia. Lancet 340:569–572

    Article  CAS  PubMed  Google Scholar 

  • Kniesel U, Risau W, Wolburg H (1996) Development of blood-brain barrier tight junctions in the rat cortex. Brain Res Dev Brain Res 96:229–240

    Article  CAS  PubMed  Google Scholar 

  • Kung L, Roberts RC (1999) Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse 31:67–75

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9:900–906

  • Lehtinen MK, Bjornsson CS, Dymecki SM, Gilbertson RJ, Holtzman DM, Monuki ES (2013) The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J Neurosci 33:17553–17559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XY, Yang YL (2013) Mitochondrial disorders associated with mitochondrial respiratory chain complex V deficiency. Zhongguo Dang Dai Er Ke Za Zhi 15:596–600

    CAS  PubMed  Google Scholar 

  • Marinescu I, Udriştoiu I, Marinescu D (2013) Choroid plexus calcification: clinical, neuroimaging and histopathological correlations in schizophrenia. Rom J Morphol Embryol 54:365–369

    PubMed  Google Scholar 

  • Marques F, Sousa JC, Sousa N, Palha JA (2013) Blood-brain-barriers in aging and in Alzheimer’s disease. Mol Neurodegener 8:38–47

    Article  PubMed Central  PubMed  Google Scholar 

  • Meltzer HY, Stahl SM (1976) The dopamine hypothesis of schizophrenia: a review. Schizophr Bull 2:19–76

    Article  CAS  PubMed  Google Scholar 

  • Michaelis L (1900) Die vitale Färbung, eine Darstellungsmethode der Zellgranula (transl.: The vital stain, a method for demonstration of mitochondria). Arch mikros Anat Entwickl 55:558

    Article  Google Scholar 

  • Modica-Napolitano JS, Lagace CJ, Brennan WA, Aprille JR (2003) Differential effects of typical and atypical neuroleptics on mitochondrial function in vitro. Arch Pharm Res 26:951–959

    Article  CAS  PubMed  Google Scholar 

  • Møllgård K, Lauritzen B, Saunders NR (1979) Double replica technique applied to choroid plexus from early foetal sheep: completeness and complexity of tight junctions. J Neurocytol 8:139–149

    Article  PubMed  Google Scholar 

  • Morowoka T (1921) The microscopical examination of the choroid plexus in general paralysis of the insane, and other forms of mental disease. Proc R Soc Med 14:23–33

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, del Zoppo GJ, Doolittle ND, Engelhardt B, Hallenbeck JM, Lonser RR, Ohlfest JR, Prat A, Scarpa M, Smeyne RJ, Drewes LR, Neuwelt EA (2013) Immunologic privilege in the central nervous system and the blood–brain barrier. J Cereb Blood Flow Metab 33:13–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muneyuki E, Makino M, Kamata H, Kagawa Y, Yoshida M, Hirata H (1993) Inhibitory effect of NaN3 on the F0F1 ATPase of submitochondrial particles as related to nucleotide binding. Biochim Biophys Acta 1144:62–68

    Article  CAS  PubMed  Google Scholar 

  • Nägele RG, Clifford PM, Siu G, Levin EC, Acharya NK, Han M, Kosciuk MC, Venkataraman V, Zavareh S, Zarrabi S, Kinslera K, Thaker NG, Nägele EP, Dash J, Wang HY, Levitas A (2011) Brain-reactive autoantibodies prevalent in human sera increase intraneuronal Amyloid-β-42 Deposition. J Alzheimers Dis 25:605–622

    PubMed  Google Scholar 

  • Nann D, Berg CP, Preuss BE, Klein R (2012) Analysis of the clinical relevance of antimitochondrial antibodies to the β- and γ-subunits of the F1F0-ATPase in patients with primary biliary cirrhosis. BMC Gastroenterol 12:152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicholls DG (2002) Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease. Int J Biochem Cell Biol 34:1372–1381

    Article  CAS  PubMed  Google Scholar 

  • Nord M, Farde L (2011) Antipsychotic occupancy of dopamine receptors in schizophrenia. CNS Neurosci Ther 17:97–103

    Article  PubMed  Google Scholar 

  • Ozawa Y, Kasuga A, Nomaguchi H, Maruyama T, Kasatani T, Shimada A, Takei I, Miyazaki J, Saruta T (1996) Detection of autoantibodies to the pancreatic islet heat shock protein 60 in insulin-dependent diabetes mellitus. J Autoimmun 9:517–524

    Article  CAS  PubMed  Google Scholar 

  • Pfister G, Stroh CM, Perschinka H, Kind M, Knoflach M, Hinterdorfer P, Wick G (2005) Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci 118:1587–1594

    Article  CAS  PubMed  Google Scholar 

  • Preuss B, Berg C, Dengjel J, Stevanovic S, Klein R (2012) Relevance of the inner mitochondrial membrane enzyme F1F0-ATPase as an autoantigen in autoimmune liver disorders. Liver Int 32:249–257

    Article  CAS  PubMed  Google Scholar 

  • Quintana FJ, Farez MF, Izquierdo G, Lucas M, Cohen IR, Weiner HL (2012) Antigen microarrays identify CNS-produced autoantibodies in RRMS. Neurology 78:532–539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Redzic ZB, Segal MB (2004) The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 56:1695–1716

    Article  CAS  PubMed  Google Scholar 

  • Reuss B (2014) Antibodies directed to Neisseria gonorrhoeae impair nerve growth factor-dependent neurite outgrowth in rat PC12 cells. J Mol Neurosci 52:353–365

    Article  CAS  PubMed  Google Scholar 

  • Reuss B, Asif AR (2014) Antibodies directed to the gram-negative bacterium Neisseria gonorrhoeae cross-react with the 60 kDa heat shock protein and lead to impaired neurite outgrowth in NTera2/D1 cells. J Mol Neurosci 54:125–136

    Article  CAS  PubMed  Google Scholar 

  • Robicsek O, Karry R, Petit I, Salman-Kesner N, Müller FJ, Klein E, Aberdam D, Ben-Shachar D (2013) Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 18:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld M, Brenner-Lavie H, Ari SG, Kavushansky A, Ben-Shachar D (2011) Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry 69:980–988

    Article  CAS  PubMed  Google Scholar 

  • Rudin DO (1979) Covert transport dysfunction in the choroid plexus as a possible cause of schizophrenia. Schizophr Bull 5:623–626

    Article  CAS  PubMed  Google Scholar 

  • Saunders NR, Møllgård K (1984) Development of the blood-brain barrier. J Dev Physiol 6:45–57

    CAS  PubMed  Google Scholar 

  • Schwarz MJ, Riedel M, Gruber R, Müller N, Ackenheil M (1998) Autoantibodies against 60-kDa heat shock protein in schizophrenia. Eur Arch Psychiatry Clin Neurosci 248:282–288

    Article  CAS  PubMed  Google Scholar 

  • Schwerk C, Papandreou T, Schuhmann D, Nickol L, Borkowski J, Steinmann U, Quednau N, Stump C, Weiss C, Berger J, Wolburg H, Claus H, Vogel U, Ishikawa H, Tenenbaum T, Schroten H (2012) Polar invasion and translocation of Neisseria meningitidis and Streptococcus suis in a novel human model of the blood-cerebrospinal fluid barrier. PLoS One 7, e30069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Senior AE, Nadanaciva S, Weber J (2002) The molecular mechanism of ATP synthesis by F1F0-ATP synthase. Biochim Biophys Acta 1553:188–211

    Article  CAS  PubMed  Google Scholar 

  • Soltys BJ, Gupta RS (1996) Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res 222:16–27

    Article  CAS  PubMed  Google Scholar 

  • Soltys BJ, Gupta RS (1997) Cell surface localization of the 60 kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Cell Biol Int 21:315–320

    Article  CAS  PubMed  Google Scholar 

  • Soltys BJ, Gupta RS (2000) Mitochondrial proteins at unexpected cellular locations: export of proteins from mitochondria from an evolutionary perspective. Int Rev Cytol 194:133–196

    Article  CAS  PubMed  Google Scholar 

  • Sørensen HJ, Mortensen EL, Reinisch JM, Mednick SA (2009) Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophr Bull 35:631–637

    Article  PubMed Central  PubMed  Google Scholar 

  • Spector R, Johanson CE (1989) The mammalian choroid plexus. Sci Am 261:68–74

    Article  CAS  PubMed  Google Scholar 

  • Spector R, Johanson CE (2007a) The origin of deoxynucleosides in brain: implications for the study of neurogenesis and stem cell therapy. Pharm Res 24:859–867

    Article  CAS  PubMed  Google Scholar 

  • Spector R, Johanson CE (2007b) Vitamin transport and homeostasis in mammalian brain: focus on vitamins B and E. J Neurochem 103:425–438

    Article  CAS  PubMed  Google Scholar 

  • Sprenger RR, Speijer D, Back JW, De Koster CG, Pannekoek H, Horrevoets AJ (2004) Comparative proteomics of human endothelial cell caveolae and rafts using two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis 25:156–172

    Article  CAS  PubMed  Google Scholar 

  • Strazielle N, Ghersi-Egea JF (1999) Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. J Neurosci 19:6275–6289

    CAS  PubMed  Google Scholar 

  • Tauc M, Vignon X, Bouchaud C (1984) Evidence for the effectiveness of the blood–CSF barrier in the fetal rat choroid plexus. A freezefracture and peroxidase diffusion study. Tissue Cell 16:65–74

    Article  CAS  PubMed  Google Scholar 

  • Tenenbaum T, Steinmann U, Friedrich C, Berger J, Schwerk C, Schroten H (2013) Culture models to study leukocyte trafficking across the choroid plexus. Fluids Barriers CNS 10:1

    Article  PubMed Central  PubMed  Google Scholar 

  • van Eden W (1991) Heat-shock proteins as immunogenic bacterial antigens with the potential to induce and regulate autoimmune arthritis. Immunol Rev 121:5–28

    Article  PubMed  Google Scholar 

  • von Haller PD, Donohoe S, Goodlett DR, Aebersold R, Watts JD (2001) Mass spectrometric characterization of proteins extracted from Jurkat T cell detergent-resistant membrane domains. Proteomics 1:1010–1021

    Article  Google Scholar 

  • Voos W (2013) Chaperone-protease networks in mitochondrial protein homeostasis. Biochim Biophys Acta 1833:388–399

    Article  CAS  PubMed  Google Scholar 

  • Wang WJ, Shi XX, Liu YW, He YQ, Wang YZ, Yang CX, Gao F (2013) The mechanism underlying the effects of the cell surface ATP synthase on the regulation of intracellular acidification during acidosis. J Cell Biochem 114:1695–1703

    Article  CAS  PubMed  Google Scholar 

  • Wax MB, Tezel G, Kawase K, Kitazawa Y (2001) Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophthalmology 108:296–302

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Mousseau DD, Richardson JS, Dyck LE, Li XM (2003) Atypical antipsychotics attenuate neurotoxicity of beta-amyloid (25–35) by modulating Bax and Bcl-X (l/s) expression and localization. J Neurosci Res 74:942–947

    Article  CAS  PubMed  Google Scholar 

  • Westall FC (2006) Molecular mimicry revisited: gut bacteria and multiple sclerosis. J Clin Microbiol 44:2099–2104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokota SI, Hirata D, Minota S, Higashiyama T, Kurimoto M, Yanagi H, Yura T, Kubota H (2000) Autoantibodies against chaperonin CCT in human sera with rheumatic autoimmune diseases: comparison with antibodies against other Hsp60 family proteins. Cell Stress Chaperones 5:337–346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu J, Quyyumi AA, Rott D, Csako G, Wu H, Halcox J, Epstein SE (2001) Antibodies to human heat-shock protein 60 are associated with the presence and severity of coronary artery disease: evidence for an autoimmune component of atherogenesis. Circulation 103:1071–1075

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Susanne Goldmann for the excellent technical assistance and the University Medicine Göttingen (UMG) for the persistent and reliable support of their work.

Conflict of Interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Reuss.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 31 kb)

Suppplementary Table 2

(DOC 30 kb)

Supplementary Table 3

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reuss, B., Schroten, H., Ishikawa, H. et al. Cross-reactivity of Antibodies Directed to the Gram-Negative Bacterium Neisseria gonorrhoeae With Heat Shock Protein 60 and ATP-Binding Protein Correlates to Reduced Mitochondrial Activity in HIBCPP Choroid Plexus Papilloma Cells. J Mol Neurosci 57, 123–138 (2015). https://doi.org/10.1007/s12031-015-0585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0585-7

Keywords

Navigation