Skip to main content
Log in

Neuroprotective Effects of Rutin in Streptozotocin-Induced Diabetic Rat Retina

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Diabetic retinopathy is widely recognized as a neurodegenerative disease of the eye. Increased oxidative stress has been considered the central factor in damaging neural retina in diabetes. Flavonoids, being powerful antioxidants, play protective roles in several oxidative stress-mediated neurodegenerative diseases. In this study, we analyzed the neuroprotective effects of a potential flavonoid, rutin, in the diabetic rat retina. Diabetes was induced in male Wistar rats by single injection of streptozotocin (65 mg/kg). In age-matched control (non-diabetic) and 1 week of diabetic rats, rutin (100 mg/kg/day) was orally administered and continued for 5 weeks. In another group of diabetic rats, only saline was supplemented. After treatments, retinas from all the groups were isolated and analyzed for potential neurotrophic factors and apoptotic and oxidative stress markers using biochemical and immunoblotting techniques. Our results indicate that rutin possesses antidiabetic activity, as blood glucose level decreased and insulin level increased in diabetic rats. In the diabetic retina, rutin supplementation enhanced the reduced levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glutathione (GSH) (P < 0.05), and reduced the level of thiobarbituric acid-reactive substances (TBARS) (P < 0.05). In addition, rutin treatment showed antiapoptotic activity by decreasing the level of caspase-3 and increasing the level of Bcl-2 in the diabetic retina. These results suggest the effectiveness of rutin in ameliorating the levels of neuroprotective factors in diabetic retina. Therefore, rutin might be a potential flavonoid that can prevent the retinal damage and subsequently the development of diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Gayyar MM, Matragoon S, Pillai BA, Ali TK, Abdelsaid MA, El-Remessy AB (2011) Epicatechin blocks pro-nerve growth factor (proNGF)-mediated retinal neurodegeneration via inhibition of p75 neurotrophin receptor expression in a rat model of diabetes. Diabetologia 54:669–680

    Article  CAS  PubMed  Google Scholar 

  • Ali TK, Matragoon S, Pillai BA, Liou GI, El-Remessy AB (2008) Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes. Diabetes 57:889–898

    Article  CAS  PubMed  Google Scholar 

  • Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, Kester M, Kimball SR, Krady JK, LaNoue KF, Norbury CC, Quinn PG, Sandirasegarane L, Simpson IA, JDRF Diabetic Retinopathy Center Group (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55:2401–2411

    Article  CAS  PubMed  Google Scholar 

  • Babu PV, Liu D, Gilbert ER (2013) Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 11:1777–1789

    Article  Google Scholar 

  • Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102:783–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barber AJ, Gardner TW, Abcouwer SF (2011) The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 52(2):1156–1163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Binder DK, Scharfman HE (2004) Brain derived neurotrophic factor. Growth Factors 22:123–131 64:214–219, Biomed Pharmacother

    Google Scholar 

  • Cervantes-Laurean D, Schramm DD, Jacobson EL, Halaweish I, Bruckner GG, Boissonneault GA (2006) Inhibition of advanced glycation end product formation on collagen by rutin and its metabolites. J Nutr Biochem 17:531–540

    Article  CAS  PubMed  Google Scholar 

  • Coskun O, Kanter M, Korkmaz A, Oter S (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res 51:117–123

    Article  CAS  PubMed  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

    Article  CAS  PubMed  Google Scholar 

  • Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1

    PubMed Central  PubMed  Google Scholar 

  • Dajas F, Rivera-Megre F, Blasina F, Arredondo F, Abin-Carriquiry JA, Costa G, Echeverry C, Lafon L, Heizen H, Ferreira M, Morquio A (2003) Neuroprotection by xavonoids. Braz J Med Biol Res 36:1613–1620

    Article  CAS  PubMed  Google Scholar 

  • De Nicoló S, Tarani L, Ceccanti M et al (2013) Effects of olive polyphenol administration on nerve growth factor and brain derived neurotrophic factor in the mouse brain. Nutrition 29:681–687

    Article  PubMed  Google Scholar 

  • Fernandes AA, Novelli EL, Okoshi K, Okoshi MP, Di Muzio BP, Guimarães JF, Fernandes JA (2010) Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomed Pharmacother 64:214–219

    Article  PubMed  Google Scholar 

  • Gupta SK, Kumar B, Nag TC, Agrawal SS, Agrawal R, Agrawal P, Saxena R, Srivastava S (2011) Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J Ocul Pharmacol Ther 27:123–130

    Article  CAS  PubMed  Google Scholar 

  • Havsteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32:1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Nassiri-Asl M (2014) Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J Endocrinol Invest 37:783–788, Invest 102:783–791

    Article  PubMed  Google Scholar 

  • Jung UJ, Lee MK, Jeong KS, Choi MS (2004) The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr 134:2499–2503

    CAS  PubMed  Google Scholar 

  • Kamalakkannan N, Prince PS (2006a) Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats. Basic Clin Pharmacol Toxicol 98:97–103

    Article  CAS  PubMed  Google Scholar 

  • Kamalakkannan N, Prince PS (2006b) Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Mol Cell Biochem 293:211–219

    Article  CAS  PubMed  Google Scholar 

  • Khan MM, Ahmad A, Ishrat T, Khuwaja G, Srivastawa P, Khan MB, Raza SS, Javed H, Vaibhav K, Khan A, Islam F (2009) Rutin protects the neural damage induced by transient focal ischemia in rats. Brain Res 1292:123–135

    Article  CAS  PubMed  Google Scholar 

  • Khan RA, Khan MR, Sahreen S (2012) Protective effects of rutin against potassium bromate induced nephrotoxicity in rats. BMC Complement Altern Med 12:204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koda T, Kuroda Y, Imai H (2009) Rutin supplementation in the diet has protective effects against toxicant-induced hippocampal injury by suppression of microglial activation and pro-inflammatory cytokines: protective effect of rutin against toxicant-induced hippocampal injury. Cell Mol Neurobiol 29:523–531

    Article  CAS  PubMed  Google Scholar 

  • Kowluru RA, Chan PS (2007) Oxidative stress and diabetic retinopathy. Exp Diabetes Res 2007:43603

    PubMed Central  PubMed  Google Scholar 

  • Kowluru RA, Kanwar M (2007) Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr Metab (Lond) 16:4–8

    Google Scholar 

  • Kowluru RA, Chakrabarti S, Chen S (2004) Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kappaB) in the retina. Acta Diabetol 41:194–199

    Article  CAS  PubMed  Google Scholar 

  • Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 47:815–820

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Zhan J, Liu XL, Wang Y, Ji J, He QQ (2013) Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin Nutr 33:59–63

    Article  PubMed  Google Scholar 

  • Lu J, Wu DM, Hu B, Zheng YL, Zhang ZF, Wang YJ (2010) NGF-dependent activation of TrkA pathway: a mechanism for the neuroprotective effect of troxerutin in D-galactose-treated mice. Brain Pathol 20:952–965

    Article  CAS  PubMed  Google Scholar 

  • Machawal L, Kumar A (2014) Possible involvement of nitric oxide mechanism in the neuroprotective effect of rutin against immobilization stress induced anxiety like behaviour, oxidative damage in mice. Pharmacol Rep 66:15–21

    Article  CAS  PubMed  Google Scholar 

  • Magalingam KB, Radhakrishnan A, Haleagrahara N (2013) Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Int J Mol Med 32:235–240

    CAS  PubMed  Google Scholar 

  • Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N (2015) Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson’s disease. J Mol Neurosci 55(3):609–617

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Morand C, Demigné C, Texier O, Régérat F, Rémésy C (1997) Bioavailability of rutin and quercetin in rats. FEBS Lett 409:12–16

    Article  CAS  PubMed  Google Scholar 

  • Mohr S, Xi X, Tang J, Kern TS (2002) Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes 51:1172–1179

    Article  CAS  PubMed  Google Scholar 

  • Muriach M, Bosch-Morell F, Alexander G, Blomhoff R, Barcia J, Arnal E, Almansa I, Romero FJ, Miranda M (2006) Lutein effect on retina and hippocampus of diabetic mice. Free Radic Biol Med 41:979–984

    Article  CAS  PubMed  Google Scholar 

  • Na JY, Kim S, Song K, Kwon J (2013) Rutin alleviates neurodegeneration through inhibiting apoptotic pathway activation in dopaminergic neuronal cells. Cell Mol Neurobiol 34(7):1071–1079

    Article  Google Scholar 

  • Nakayama M, Aihara M, Chen YN, Araie M, Tomita-Yokotani K, Iwashina T (2011) Neuroprotective effects of flavonoids on hypoxia-, glutamate-, and oxidative stress-induced retinal ganglion cell death. Mol Vis 17:1784–1793

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ola MS, Berkich DA, Xu Y, King MT, Gardner TW, Simpson I, LaNoue KF (2006) Analysis of glucose metabolism in diabetic rat retinas. Am J Physiol Endocrinol Metab 290:E1057–E1067

    Article  CAS  PubMed  Google Scholar 

  • Ola MS, Nawaz MI, Siddiquei MM et al (2012) Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J Diabetes Complicat 26:56–64

    Article  PubMed  Google Scholar 

  • Ola MS, Ahmed MM, Abuohashish HM, Al-Rejaie SS, Alhomida AS (2013a) Telmisartan ameliorates neurotrophic support and oxidative stress in the retina of streptozotocin-induced diabetic rats. Neurochem Res 38:1572–1579

    Article  CAS  PubMed  Google Scholar 

  • Ola MS, Nawaz MI, Khan HA, Alhomida AS (2013b) Neurodegeneration and neuroprotection in diabetic retinopathy. Int J Mol Sci 14:2559–2572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ola MS, Aleisa AM, Al-Rejaie SS, Abuohashish HM, Parmar MY, Alhomida AS, Ahmed MM (2014) Flavonoid, morin inhibits oxidative stress, inflammation and enhances neurotrophic support in the brain of streptozotocin-induced diabetic rats. Neurol Sci 35:1003–1008

    Article  PubMed  Google Scholar 

  • Ozawa Y, Sasaki M, Takahashi N, Kamoshita M, Miyake S, Tsubota K (2012) Neuroprotective effects of lutein in the retina. Curr Pharm Des 18:51–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev (5):270–278

  • Pinent M, Blay M, Bladé MC, Salvadó MJ, Arola L, Ardévol A (2004) Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology 145:4985–4990

    Article  CAS  PubMed  Google Scholar 

  • Prince PS, Kannan NK (2006) Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats. J Pharm Pharmacol 58:1373–1383

    Article  Google Scholar 

  • Pu F, Mishima K, Irie K, Motohashi K, Tanaka Y, Orito K, Egawa T, Kitamura Y, Egashira N, Iwasaki K, Fujiwara M (2007) Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci 104:329–334

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, and Packer L (1998) Flavonoids in health and diseases, Marcel Dekker, New York, NY. Vol: 1, 163–177

  • Sasaki M, Ozawa Y, Kurihara T, Kubota S, Yuki K, Noda K, Kobayashi S, Ishida S, Tsubota K (2010) Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia 53:971–979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scuderi S, D’Amico AG, Castorina A, Federico C, Marrazzo G, Drago F, Bucolo C, D’Agata V (2014) Davunetide (NAP) protects the retina against early diabetic injury by reducing apoptotic death. J Mol Neurosci 2014(54):395–404

    Article  Google Scholar 

  • Seki M, Tanaka T, Nawa H, Usui T, Fukuchi T, Ikeda K, Abe H, Takei N (2004) Involvement of brain derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain derived neurotrophic factor for dopaminergic amacrine cells. Diabetes 53:2412–2419

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Ali A, Ali J, Sahni JK, Baboota S (2013) Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 22:1063–1079

    Article  CAS  PubMed  Google Scholar 

  • Silva KC, Rosales MA, Biswas SK, Lopes de Faria JB, Lopes de Faria JM (2009) Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes. Diabetes 58:1382–1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silva KC, Rosales MA, Hamassaki DE, Saito KC, Faria AM, Ribeiro PA, Faria JB, Faria JM (2013) Green tea is neuroprotective in diabetic retinopathy. Invest Ophthalmol Vis Sci 54:1325–1336

    Article  CAS  PubMed  Google Scholar 

  • Vessal M, Hemmati M, Vasei M (2003) Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol 135C:357–364

    Article  CAS  PubMed  Google Scholar 

  • Wagner C, Fachinetto R, Dalla Corte CL, Brito VB, Severo D, Costa DG, Morel AF, Nogueira CW, Rocha JB (2006) Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res 1107:192–198

    Article  CAS  PubMed  Google Scholar 

  • Wagner C, Vargas AP, Roos DH, Morel AF, Farina M, Nogueira CW, Aschner M, Rocha JB (2010) Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices. Arch Toxicol 84(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization. Diabetes Fact Sheet Number 312; WHO: Geneva, Switzerland; Available online: http://www.who.int/mediacentre/factsheets/fs312/en

  • Xu SL, Bi CW, Choi RC, Zhu KY, Miernisha A, Dong TT, Tsim KW (2013) Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid Based Complement Alternat Med 2013:127075

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project no. RGP-VPP-179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shamsul Ola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ola, M.S., Ahmed, M.M., Ahmad, R. et al. Neuroprotective Effects of Rutin in Streptozotocin-Induced Diabetic Rat Retina. J Mol Neurosci 56, 440–448 (2015). https://doi.org/10.1007/s12031-015-0561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0561-2

Keywords

Navigation