Skip to main content

Advertisement

Log in

The Role of LRRK2 in the Regulation of Monocyte Adhesion to Endothelial Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The leucine-rich repeat kinase 2 (LRRK2) gene was discovered to encode a member of an evolutionarily conserved family of proteins marked by GTPase domains usually in combination with kinase domains. Missense mutations in both the kinase and GTPase domains in LRRK2 have been found to cause late-onset Parkinson’s disease (PD). In this study, we investigated the effects of the LRRK2 on endothelial inflammation. We first demonstrated that the LRRK2 is expressed in endothelial cells. We also report here that IL-1β can possibly increase LRRK2 expression in human umbilical vein endothelial cells (HUVECs). Wild-type LRRK2 (LRRK2wt) expression induces expression of vascular cell adhesion molecule 1 (VCAM-1) which is further exacerbated in cells expressing PD-associated LRRK2 G2019S mutants (LRRK2G2019S). Importantly, induction of VCAM-1 is almost completely blocked in cells expressing the GTP-binding-deficient mutant K1347A of LRRK2 (LRRK2K1347A). In addition, overexpression of LRRK2wt and LRRK2G2019S were found to cause an increase in monocyte attachment to endothelial cells. Mechanistically, we found that LRRK2 increases the transcriptional activity of nuclear factor κB (NF-κB) by increasing phosphorylation levels of IκBα. These findings suggest that inhibition of LRRK2 kinase activity may be a potential target for treatment of endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bosgraaf L, Van Haastert PJ (2003) Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta 1643:5–10

    Article  CAS  PubMed  Google Scholar 

  • Dächsel JC, Farrer MJ (2010) LRRK2 and Parkinson disease. Arch Neurol 67:542–547

    PubMed  Google Scholar 

  • Farkas E, De Jong GI, de Vos RA, Jansen Steur EN, Luiten PG (2000) Pathological features of cerebral cortical capillaries are doubled in Alzheimer’s disease and Parkinson’s disease. Acta Neuropathol 100:395–402

    Article  CAS  PubMed  Google Scholar 

  • Gardet A, Benita Y, Li C, Sands BE, Ballester I, Stevens C, Korzenik JR, Rioux JD, Daly MJ, Xavier RJ, Podolsky DK (2010) LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol 185(9):5577–5585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci 902:230–239, discussion 239–240

    Article  CAS  PubMed  Google Scholar 

  • Greggio E, Cookson MR (2009) Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: three questions. ASN Neurol 1:e00002

    Google Scholar 

  • Guo L, Gandhi PN, Wang W, Petersen RB, Wilson-Delfosse AL, Chen SG (2007) The Parkinson’s disease associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res 313:3658–3670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hakimi M, Selvanantham T, Swinton E, Padmore RF, Tong Y, Kabbach G, Venderova K, Girardin SE, Bulman DE, Scherzer CR, LaVoie MJ, Gris D, Park DS, Angel JB, Shen J, Philpott DJ, Schlossmacher MG (2011) Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J Neural Transm 118:795–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Healy DG et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case–control study. Lancet Neurol 7:583–590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kortekaas R, Lenders KL, van Oostrom JCH et al (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57:176–179

    Article  CAS  PubMed  Google Scholar 

  • Martin I et al (2011) Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet 12:301–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moehle MS, Webber PJ, Tse T, Sukar N, Standaert DG, DeSilva TM, Cowell RM, West AB (2012) LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci 32(5):1602–1611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile Parkinsonism and Parkinson’s disease. Neuroscience 211:13–16

    CAS  Google Scholar 

  • Mogi M, Kondo T, Mizuno Y, Nagatsu T (2007) p53 protein, interferon-c, and NF-kB levels are elevated in the parkinsonian brain. Neurosci Lett 414:94–97

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 11:999–1016

    Article  CAS  PubMed  Google Scholar 

  • Sheng B, Wang X, Su B, Lee HG, Casadesus G et al (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 120(3):419–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi H, Sheng B, Zhang F (2013) Kruppel-like factor 2 protects against ischemic stroke by regulating endothelial blood brain barrier function. Am J Physiol Heart Circ Physiol 304(6):H796–H805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 9:1231–1233

    Article  CAS  PubMed  Google Scholar 

  • Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    Article  CAS  PubMed  Google Scholar 

  • Thevenet J, Pescini Gobert R, Hooft van Huijsduijnen R, Wiessner C, Sagot YJ (2011) Regulation of LRRK2 expression points to a functional role in human monocyte maturation. PLoS One 6:e21519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 102(46):16842–16847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou G, Hamik A, Nayak L et al (2012) Endothelial Kruppel-like factor 4 protects against atherothrombosis in mice. J Clin Invest 122(12):4727–4731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Müller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T (2004a) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607

    Article  CAS  PubMed  Google Scholar 

  • Zimprich A et al (2004b) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Hongge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hongge, L., Kexin, G., Xiaojie, M. et al. The Role of LRRK2 in the Regulation of Monocyte Adhesion to Endothelial Cells. J Mol Neurosci 55, 233–239 (2015). https://doi.org/10.1007/s12031-014-0312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0312-9

Keywords

Navigation