Skip to main content

Advertisement

Log in

CRM197-Induced Blood–Brain Barrier Permeability Increase is Mediated by Upregulation of Caveolin-1 Protein

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Cross-reacting material 197 (CRM197), a non-toxin mutant of diphtheria toxin, could act as a diphtheria toxin receptor-specific carrier protein for the targeted delivery of macromolecular substances across the blood–brain barrier (BBB) in vitro. This study was performed to investigate the effects and mechanisms of CRM197 on the permeability of BBB in guinea pigs. Data from the Evans blue extravasation showed that the BBB permeability significantly increased after CRM197 injection in a dose-dependent manner. Transmission electron microscopy indicated CRM197 could induce increased pinocytotic vesicles and vacuoles in brain microvascular endothelial cells. Immunohistochemistry and western blot assay revealed that CRM197 enhanced caveolin-1 protein expression in brain microvessels. The caveolin-1 protein in the membrane fraction of microvessels began to upregulate at 5 min and reached the peak at 10 min after CRM197 treatment, associated by diminished expression of several tight junction-associated proteins ZO-1, occludin, and claudin-5. Thus, our results indicate that the in vivo targeting CRM197 leads to increased BBB permeability via upregulation of caveolin-1 protein, increased pinocytotic vesicles, and redistribution of tight junction-associated proteins in brain microvessels. CRM197 may have a potential application for targeted drug delivery across the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RG, Kamen BA, Rothberg KG, Lacey SW (1992) Potocytosis: sequestration and transport of small molecules by caveolae. Science 255:410–411

    Article  CAS  PubMed  Google Scholar 

  • Bathori G, Cervenak L, Karadi I (2004) Caveolae—an alternative endocytotic pathway for targeted drug delivery. Crit Rev Ther Drug Carrier Syst 21:67–95

    Article  PubMed  Google Scholar 

  • Chang T, Neville DM Jr (1978) Demonstration of diphtheria toxin receptors on surface membranes from both toxin-sensitive and toxin-resistant species. J Biol Chem 253:6866–6871

    CAS  PubMed  Google Scholar 

  • Dagan R, Poolman JT, Zepp F (2008) Combination vaccines containing DTPa-Hib: impact of IPV and coadministration of CRM197 conjugates. Expert Rev Vaccin 7:97–115

    Article  CAS  Google Scholar 

  • Drewes LR (2001) Molecular architecture of the brain microvasculature: perspective on blood–brain transport. J Mol Neurosci 16:93–98, discussion 151–157

    Article  CAS  PubMed  Google Scholar 

  • Feng D, Nagy JA, Hipp J, Dvorak HF, Dvorak AM (1996) Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine and serotonin. J Exp Med 183:1981–1986

    Article  CAS  PubMed  Google Scholar 

  • Frank PG, Pavlides S, Lisanti MP (2009) Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res 335:41–47

    Article  CAS  PubMed  Google Scholar 

  • Gaillard PJ, Brink A, Boer de AG (2004) WO2004069870.

  • Gaillard PJ, Brink A, Boer de AG (2005a) Diphtheria toxin receptor-targeted brain drug delivery. Int Congres Ser 1277:185–198

    Article  CAS  Google Scholar 

  • Gaillard PJ, Visser CC, Boer de AG (2005b) Targeted delivery across the blood–brain barrier. Exp Opin Drug Deliv 2:299–309

    Article  CAS  Google Scholar 

  • Gaillard PJ, Boer de AG (2006) A novel opportunity for targeted drug delivery to the brain. J Control Release 116:e60–e62

    Article  CAS  PubMed  Google Scholar 

  • Genedani S, Guidolin D, Leo G, Filaferro M, Torvinen M, Woods AS, Fuxe K, Ferré S, Agnati LF (2005) Computer-assisted image analysis of caveolin-1 involvement in the internalization process of adenosine A2A-dopamine D2 receptor heterodimers. J Mol Neurosci 26:177–184

    Article  CAS  PubMed  Google Scholar 

  • Jones AR, Shusta EV (2007) Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24:1759–1771

    Article  CAS  PubMed  Google Scholar 

  • Kageyama T, Ohishi M, Miyamoto S, Mizushima H, Iwamoto R, Mekada E (2007) Diphtheria toxin mutant CRM197 possesses weak EF2-ADP-ribosyl activity that potentiates its anti-tumorigenic activity. J Biochem 142:95–104

    Article  CAS  PubMed  Google Scholar 

  • Lajoie P, Nabi IR (2007) Regulation of raft-dependent endocytosis. J Cell Mol Med 11:644–653

    Article  CAS  PubMed  Google Scholar 

  • McCaffrey G, Staatz WD, Quigley CA, Nametz N, Seelbach MJ, Campos CR, Brooks TA, Egleton RD, Davis TP (2007) Tight junctions contain oligomeric protein assembly critical for maintaining blood–brain barrier integrity in vivo. J Neurochem 103:2540–2555

    Article  CAS  Google Scholar 

  • Michel CC, Neal CR (1999) Openings through endothelial cells associated with increased microvascular permeability. Microcirculation 6:45–54

    CAS  PubMed  Google Scholar 

  • Mishima K, Higashiyama S, Asai A, Yamaoka K, Nagashima Y, Taniguchi N, Kitanaka C, Kirino T, Kuchino Y (1998) Heparin-binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas. Acta Neuropathol 96:322–328

    Article  CAS  PubMed  Google Scholar 

  • Mitamura T, Higashiyama S, Taniguchi N, Klagsbrun M, Mekada E (1995) Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J Biol Chem 270:1015–1019

    Article  CAS  PubMed  Google Scholar 

  • Nag S, Venugopalan R, Stewart DJ (2007) Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood–brain barrier breakdown. Acta Neuropathol 114:459–469

    Article  CAS  PubMed  Google Scholar 

  • Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W, Eastburn KK, Madara JL (2000) Tight junctions are membrane microdomains. J Cell Sci 113:1771–1781

    CAS  PubMed  Google Scholar 

  • Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF (2009) Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 23:35–58

    Article  CAS  PubMed  Google Scholar 

  • Predescu SA, Predescu DN, Malik AB (2007) Molecular determinants of endothelial transcytosis and their role in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 293:L823–L842

    Article  CAS  PubMed  Google Scholar 

  • Raab G, Klagsbrun M (1997) Heparin-binding EGF-like growth factor. Biochim Biophys Acta 1333:F179–F199

    CAS  PubMed  Google Scholar 

  • Sigurdardottir ST, Davidsdottir K, Arason VA, Jonsdottir O, Laudat F, Gruber WC, Jonsdottir I (2008) Safety and immunogenicity of CRM197-conjugated pneumococcal-meningococcal C combination vaccine (9vPnC-MnCC) whether given in two or three primary doses. Vaccine 26:4178–4186

    Article  CAS  PubMed  Google Scholar 

  • Song L, Pachter JS (2003) Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins. In Vitro. Cell Dev Biol Anim 39:313–320

    Article  CAS  Google Scholar 

  • Tagawa A, Mezzacasa A, Hayer A, Longatti A, Pelkmans L, Helenius A (2005) Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J Cell Biol 170:769–779

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Sasahara M, Ohno M, Higashiyama S, Hayase Y, Shimada M (1999) Heparin-binding epidermal growth factor-like growth factor mRNA expression in neonatal rat brain with hypoxic/ischemic injury. Brain Res 827:130–138

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Xue Y, Shang X, Liu Y (2010) Diphtheria toxin mutant CRM197-mediated transcytosis across blood-brain barrier in vitro. Cell Mol Neurobiol 30:717–725

    Article  CAS  PubMed  Google Scholar 

  • Xia CY, Zhang Z, Xue YX, Wang P, Liu YH (2009) Mechanisms of the increase in the permeability of the blood-tumor barrier obtained by combining low-frequency ultrasound irradiation with small-dose bradykinin. J Neurooncol 94:41–50

    Article  CAS  PubMed  Google Scholar 

  • Yagi H, Yotsumoto F, Sonoda K, Kuroki M, Mekada E, Miyamoto S (2009) Synergistic anti-tumor effect of paclitaxel with CRM197, an inhibitor of HB-EGF, in ovarian cancer. Int J Cancer 124:1429–1439

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Liu Y, Zhao Z, Xue Y (2010) Effects of green tea polyphenols on caveolin-1 of microvessel fragments in rats with cerebral ischemia. Neurol Res 32:963–970

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Natural Science Foundation of China (Nos. 30670723, 30700249, 30700861, 30800451, 30872656, and 30973079), the special fund for Scientific Research of Doctor-degree Subjects in Colleges and Universities (No. 20092104110015), and Shenyang Science and Technology Plan Projects (Nos. 1091175-1-01 and 1081266-9-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixue Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Liu, Y., Shang, X. et al. CRM197-Induced Blood–Brain Barrier Permeability Increase is Mediated by Upregulation of Caveolin-1 Protein. J Mol Neurosci 43, 485–492 (2011). https://doi.org/10.1007/s12031-010-9471-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9471-5

Keywords

Navigation