Skip to main content
Log in

Expression of clock-related genes in benign and malignant adrenal tumors

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Although the effect of the central clock system on adrenal function has been extensively studied, the role of the peripheral clock system in adrenal tumorigenesis remains largely unexplored. In this study we investigated the expression of clock-related genes in normal adrenocortical tissue and adrenocortical tumors. Twenty-seven fresh frozen human adrenal tissues including 13 cortisol secreting adenomas (CSA), seven aldosterone producing adenomas (APA), and seven adrenocortical carcinomas (ACC) were collected. CLOCK, BMAL1, PER1, CRY1, Rev-ERB, and RORα mRNA and protein expression were determined by qPCR and immunoblotting in pathological tissues and compared with the adjacent normal adrenal tissues. A significant downregulation of PER1, CRY1, and Rev-ERB compared with their normal tissue was demonstrated in CSA. All clock-related genes were overexpressed in APA compared with their normal tissue, albeit not significantly. A significant upregulation of CRY1 and PER1 and downregulation of BMAL1, RORα, and Rev-ERB compared with normal adrenal tissue was observed in ACC. BMAL1 and PER1 were significantly downregulated in APA compared with CSA. CLOCK, CRY1, and PER1 were upregulated, whereas BMAL1, RORα, and Rev-ERB were downregulated in ACC compared with CSA. Our study demonstrated the expression of CLOCK, BMAL1, PER1, CRY1, Rev-ERB, and RORα in normal and pathological human adrenal tissues. Adrenal tumors exhibited altered expression of these genes compared with normal tissue, with specific differences between benign and malignant lesions and between benign tumors arising from glomerulosa vs fasciculata zone. Further studies should clarify whether these alterations could be implicated in adrenocortical tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Torres-Farfan, F.J. Valenzuela, R. Ebensperger, N. Méndez, C. Campino, H.G. Richter, G.J. Valenzuela, M. Serón-Ferré, Circadian cortisol secretion and circadian adrenal responses to ACTH are maintained in dexamethasone suppressed Capuchin Monkeys (Cebus Apella). Am. J. Primatol. 70(1), 93–100 (2008)

    CAS  PubMed  Google Scholar 

  2. C. Campino, F.J. Valenzuela, C. Torres-Farfan, H.E. Reynolds, L. Abarzua-Catalan, E. Arteaga, C. Trucco, S. Guzmán, G.J. Valenzuela, M. Seron-Ferre, Melatonin exerts direct inhibitory actions on ACTH responses in the human adrenal gland. Horm. Metab. Res. 43(5), 337–342 (2011)

    CAS  PubMed  Google Scholar 

  3. R.V. Andrews, G.E. Folk, Circadian metabolic patterns in cultured hamster adrenal glands. Comp. Biochem. Physiol. 11, 393–409 (1964)

    CAS  PubMed  Google Scholar 

  4. M.J. O’Hare, P.J. Hornsby, Absence of a circadian rhythm of corticosterone secretion in monolayer cultures of adult rat adrenocortical cells. Experientia 31(3), 378–380 (1975)

    PubMed  Google Scholar 

  5. H. Oster, S. Damerow, S. Kiessling, V. Jakubcakova, D. Abraham, J. Tian, M.W. Hoffmann, G. Eichele, The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4(2), 163–173 (2006)

    CAS  PubMed  Google Scholar 

  6. A. Ishida, T. Mutoh, T. Ueyama, H. Bando, S. Masubuchi, D. Nakahara, G. Tsujimoto, H. Okamura, Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab. 2(5), 297–307 (2005)

    CAS  PubMed  Google Scholar 

  7. M.S. Jasper, W.C. Engeland, Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats. Neuroendocrinology 59(2), 97–109 (1994)

    CAS  PubMed  Google Scholar 

  8. J.E. Ottenweller, A.H. Meier, Adrenal innervation may be an extrapituitary mechanism able to regulate adrenocortical rhythmicity in rats. Endocrinology 111(4), 1334–1338 (1982)

    CAS  PubMed  Google Scholar 

  9. Y.M. Ulrich-Lai, M.M. Arnhold, W.C. Engeland, Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290(4), R1128–R1135 (2006)

    CAS  PubMed  Google Scholar 

  10. C.H. Ko, J.S. Takahashi, Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, Spec No R271–7 (2006)

    PubMed  Google Scholar 

  11. N. Nader, G.P. Chrousos, T. Kino, Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol. Metab. 21(5), 277–286 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Angelousi, E. Kassi, N. Nasiri-Ansari, H.S. Randeva, G.A. Kaltsas, G.P. Chrousos, Clock genes and cancer development in particular in endocrine tissues. Endocr. Relat. Cancer 26, R305–R317 (2019)

    CAS  PubMed  Google Scholar 

  13. A. Angelousi, N. Nasiri-Ansari, E. Spilioti, E. Mantzou, V. Kalotyxou, G. Chrousos, G. Kaltsas, E. Kassi, Altered expression of circadian clock genes in polyglandular autoimmune syndrome type III. Endocrine 59(1), 109–119 (2018)

    CAS  PubMed  Google Scholar 

  14. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) method. Methods 25(4), 402–408 (2001)

    CAS  Google Scholar 

  15. H. Guo, H. Guo, J.M. Brewer, M.N. Lehman, E.L. Bittman, Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J. Neurosci. 26(24), 6406–6412 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. F.J. Valenzuela, C. Torres-Farfan, H.G. Richter, N. Mendez, C. Campino, F. Torrealba, G.J. Valenzuela, M. Serón-Ferré, Clock gene expression in adult primate suprachiasmatic nuclei and adrenal: is the adrenal a peripheral clock responsive to melatonin? Endocrinology 149(4), 1454–1461 (2008)

    CAS  PubMed  Google Scholar 

  17. W.C. Engeland, M.M. Arnhold, Neural circuitry in the regulation of adrenal corticosterone rhythmicity. Endocrine 28(3), 325–332 (2005)

    CAS  PubMed  Google Scholar 

  18. A.H. Meier, Daily variation in concentration of plasma corticosteroid in hypophysectomized rats. Endocrinology 98(6), 1475–1479 (1976)

    CAS  PubMed  Google Scholar 

  19. J. Fahrenkrug, J. Hannibal, B. Georg, Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy. J. Neuroendocrinol. 20(3), 323–329 (2008)

    CAS  PubMed  Google Scholar 

  20. R.M. Buijs, J. Wortel, J.J. Van Heerikhuize, M.G. Feenstra, G.J. Ter Horst, H.J. Romijn, A. Kalsbeek, Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur. J. Neurosci. 11(5), 1535–1544 (1999)

    CAS  PubMed  Google Scholar 

  21. C. Cailotto, J. Lei, J. van der Vliet, C. van Heijningen, C.G. van Eden, A. Kalsbeek, P. Pévet, R.M. Buijs, Effects of nocturnal light on (clock) gene expression in peripheral organs: a role for the autonomic innervation of the liver. PLoS ONE 4(5), e5650 (2009)

    PubMed  PubMed Central  Google Scholar 

  22. Z. Nagy, A. Marta, H. Butz, I. Liko, K. Racz, A. Patocs, Modulation of the circadian clock by glucocorticoid receptor isoforms in the H295R cell line. Steroids 11, 620–27 (2016)

    Google Scholar 

  23. J. Richards, K.-Y. Cheng, S. All, G. Skopis, L. Jeffers, I.J. Lynch, C.S. Wingo, M.L. Gumz, A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na+ retention. Am. J. Physiol. Ren. Physiol. 305(12), F1697–704 (2013)

    CAS  Google Scholar 

  24. D.G. Romero, S. Rilli, M.W. Plonczynski, L.L. Yanes, M.Y. Zhou, E.P. Gomez-Sanchez, C.E. Gomez-Sanchez, Adrenal transcription regulatory genes modulated by angiotensin II and their role in steroidogenesis. Physiol. Genomics 30(1), 26–34 (2007)

    CAS  PubMed  Google Scholar 

  25. M. Tetti, I. Castellano, F. Venziano, C. Magnino, F. Veglio, P. Mulatero, S. Monticone, Role of cryptochrome-1 and cryptochrome-2 in aldosterone-producing adenomas and adrenocortical cells. Int. J. Mol. Sci. 19(6), E1675 (2018)

    PubMed  Google Scholar 

  26. N.C. Nicolaides, E. Charmandari, T. Kino, G.P. Chrousos, Stress-related and circadian secretion and target tissue actions of glucocorticoids: impact on health. Front. Endocrinol. 8, 70 (2017)

    Google Scholar 

  27. E. Kassi, G. Chrousos, The central CLOCK system and the stress axis in health and disease. Hormones 12(2), 172–191 (2013)

    PubMed  Google Scholar 

  28. S.-M. Kim, N. Neuendorff, R.C. Alaniz, Y. Sun, R.S. Chapkin, D.J. Earnest, Shift work cycle-induced alterations of circadian rhythms potentiate the effects of high-fat diet on inflammation and metabolism. FASEB J. 32(6), 3085–3095 (2018)

    PubMed  PubMed Central  Google Scholar 

  29. M. Perelis, K.M. Ramsey, J. Bass, The molecular clock as a metabolic rheostat. Diabetes, Obes. Metab. 17, 99–105 (2015)

    CAS  Google Scholar 

  30. A. Woller, D. Gonze, Modeling clock-related metabolic syndrome due to conflicting light and food cues. Sci. Rep. 8(1), 13641 (2018)

    PubMed  PubMed Central  Google Scholar 

  31. T. Karantanos, G. Theodoropoulos, M. Gazouli, A. Vaiopoulou, C. Karantanou, M. Lymberi, D. Pektasides, Expression of clock genes in patients with colorectal cancer. Int. J. Biol. Markers 28(3), 280–285 (2013)

    CAS  PubMed  Google Scholar 

  32. M. Elshazley, M. Sato, T. Hase, R. Yamashita, K. Yoshida, S. Toyokuni, F. Ishiguro, H. Osada, Y. Sekido, K. Yokoi et al. The circadian clock gene BMAL1 is a novel therapeutic target for malignant pleural mesothelioma. Int. J. Cancer 131(12), 2820–2831 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. A. Shostak, Circadian clock, cell division, and cancer: from molecules to organism. Int. J. Mol. Sci. 18(4), E873 (2017)

    PubMed  Google Scholar 

  34. S. Sahar, P. Sassone-Corsi, Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9(12), 886–896 (2009)

    CAS  PubMed  Google Scholar 

  35. A. Sancar, L.A. Lindsey-Boltz, S. Gaddameedhi, C.P. Selby, R. Ye, Y.-Y. Chiou, M.G. Kemp, J. Hu, J.H. Lee, N. Ozturk, Circadian clock, cancer, and chemotherapy. Biochemistry 54(2), 110–123 (2015)

    CAS  PubMed  Google Scholar 

  36. S. Kiessling, N. Cermakian, The tumor circadian clock: a new target for cancer therapy? Future Oncol. 13(29), 2607–2610 (2017)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kassi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelousi, A., Nasiri-Ansari, N., Karapanagioti, A. et al. Expression of clock-related genes in benign and malignant adrenal tumors. Endocrine 68, 650–659 (2020). https://doi.org/10.1007/s12020-020-02246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02246-z

Keywords

Navigation