Skip to main content

Advertisement

Log in

Exendin-4 promotes pancreatic β-cell proliferation via inhibiting the expression of Wnt5a

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Exendin-4, a glucagon-like peptide-1 receptor agonist, is currently regarded as an effective therapeutic strategy for type-2 diabetes. Previous studies indicated that exendin-4 promoted β cell proliferation. However, the underlying mechanisms remain largely unknown. Recently it was reported that exendin-4 promoted pancreatic β cell proliferation by regulating the expression level of Wnt4. The present study was designed to investigate whether other Wnt isoforms take part in accommodation of β-cell proliferation. We found that exendin-4 promotes the proliferation and suppresses the expression of Wnt5a in INS-1 cell line and C57Bl/6 mouse pancreatic β-cells. Further mechanistic study demonstrated that exendin-4 promoted INS-1 cell proliferation partly through down-regulating the expression of Wnt5a. Furthermore, Wnt5a could induce the activation of calmodulin-dependent protein kinase II in INS-1 cells, thereby decreasing the cellular stable β-catenin and its nuclear translocation, and finally reduce the expression of cyclin D1. In addition, we also found that both of the receptors (Frz-2 and Ror-2) mediated the effect of Wnt5a on β cell line INS-1 proliferation. Taken together, this study suggests that Wnt5a plays a critical role in exendin-4-induced β-cell proliferation, indicating that Wnt5a might be a novel regulator in counterbalance of β cell mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Cnop, N. Welsh, J.C. Jonas, A. Jorns, S. Lenzen, D.L. Eizirik, Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2), S97–S107 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. A. Vetere, A. Choudhary, S.M. Burns, B.K. Wagner, Targeting the pancreatic beta-cell to treat diabetes. Nat. Rev. Drug. Discov. 13, 278–289 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. D. Mathis, L. Vence, C. Benoist, Beta-Cell death during progression to diabetes. Nature 414, 792–798 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. D.J. Drucker, J.B. Buse, K. Taylor, D.M. Kendall, M. Trautmann, D. Zhuang, L. Porter; Group D-S, Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372, 1240–1250 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. W. Kim, J.M. Egan, The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev. 60, 470–512 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M.D. Gordon, R. Nusse, Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22433 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. O.R. Bandapalli, S. Dihlmann, R. Helwa, S. Macher-Goeppinger, J. Weitz, P. Schirmacher, K. Brand, Transcriptional activation of the beta-catenin gene at the invasion front of colorectal liver metastases. J. Pathol. 218, 370–379 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. K. Wunnenberg-Stapleton, I.L. Blitz, C. Hashimoto, K.W. Cho, Involvement of the small GTPases XRhoA and XRnd1 in cell adhesion and head formation in early Xenopus development. Development 126, 5339–5351 (1999)

    CAS  PubMed  Google Scholar 

  9. M. Kuhl, L.C. Sheldahl, C.C. Malbon, R.T. Moon, Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem. 275, 12701–12711 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. I.C. Rulifson, S.K. Karnik, P.W. Heiser, D. ten Berge, H. Chen, X. Gu, M.M. Taketo, R. Nusse, M. Hebrok, S.K. Kim, Wnt signaling regulates pancreatic beta cell proliferation. Proc. Natl. Acad. Sci. U S A 104, 6247–6252 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Fujino, H. Asaba, M.J. Kang, Y. Ikeda, H. Sone, S. Takada, D.H. Kim, R.X. Ioka, M. Ono, H. Tomoyori, M. Okubo, T. Murase, A. Kamataki, J. Yamamoto, K. Magoori, S. Takahashi et al., Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc. Natl. Acad. Sci. U S A 100, 229–234 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. S. Schinner, F. Ulgen, C. Papewalis, M. Schott, A. Woelk, A. Vidal-Puig, W.A. Scherbaum, Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules. Diabetologia 51, 147–154 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. C. Wilson, Diabetes: human beta-cell proliferation by promoting Wnt signalling. Nat Rev Endocrinol 9, 502 (2013)

    Article  PubMed  Google Scholar 

  14. M.L. Johnson, N. Rajamannan, Diseases of Wnt signaling. Rev. Endocr. Metab. Disord. 7, 41–49 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. C. Heller, M.C. Kuhn, B. Mulders-Opgenoorth, M. Schott, H.S. Willenberg, W.A. Scherbaum, S. Schinner, Exendin-4 upregulates the expression of Wnt-4, a novel regulator of pancreatic beta-cell proliferation. Am. J. Physiol. Endocrinol. Metab. 301, E864–E872 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. T.A. Matsuoka, L. Zhao, I. Artner, H.W. Jarrett, D. Friedman, A. Means, R. Stein, Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol. Cell. Biol. 23, 6049–6062 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D.A. Stoffers, T.J. Kieffer, M.A. Hussain, D.J. Drucker, S. Bonner-Weir, J.F. Habener, J.M. Egan, Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 49, 741–748 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. R.S. Heller, T. Klein, Z. Ling, H. Heimberg, M. Katoh, O.D. Madsen, P. Serup, Expression of Wnt, Frizzled, sFRP, and DKK genes in adult human pancreas. Gene Expr. 11, 141–147 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Z. Liu, J.F. Habener, Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J. Biol. Chem. 283, 8723–8735 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. W.J. Song, W.E. Schreiber, E. Zhong, F.F. Liu, B.D. Kornfeld, F.E. Wondisford, M.A. Hussain, Exendin-4 stimulation of cyclin A2 in beta-cell proliferation. Diabetes 57, 2371–2381 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. Tian, J. Gao, G. Weng, H. Yi, B. Tian, T.D. O’Brien, Z. Guo, Comparison of exendin-4 on beta-cell replication in mouse and human islet grafts. Transpl. Int. 24, 856–864 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. M. Arakawa, C. Ebato, T. Mita, T. Hirose, R. Kawamori, Y. Fujitani, H. Watada, Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents. Biochem. Biophys. Res. Commun. 390, 809–814 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. J. Xie, N.M. El Sayed, C. Qi, X. Zhao, C.E. Moore, T.P. Herbert, Exendin-4 stimulates islet cell replication via the IGF1 receptor activation of mTORC1/S6K1. J. Mol. Endocrinol. 53, 105–115 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. K. Kumawat, M.H. Menzen, R.M. Slegtenhorst, A.J. Halayko, M. Schmidt, R. Gosens, TGF-beta-activated kinase 1 (TAK1) signaling regulates TGF-beta-induced WNT-5A expression in airway smooth muscle cells via Sp1 and beta-catenin. PLoS ONE 9, e94801 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  25. P. Michl, A.R. Ramjaun, O.E. Pardo, P.H. Warne, M. Wagner, R. Poulsom, C. D’Arrigo, K. Ryder, A. Menke, T. Gress, J. Downward, CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness. Cancer Cell 7, 521–532 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. S. Ripka, A. Konig, M. Buchholz, M. Wagner, B. Sipos, G. Kloppel, J. Downward, T. Gress, P. Michl, WNT5A--target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis 28, 1178–1187 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. C.W. Park, H.W. Kim, S.H. Ko, J.H. Lim, G.R. Ryu, H.W. Chung, S.W. Han, S.J. Shin, B.K. Bang, M.D. Breyer, Y.S. Chang, Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J. Am. Soc. Nephrol. 18, 1227–1238 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. W. Li, M. Cui, Y. Wei, X. Kong, L. Tang, D. Xu, Inhibition of the expression of TGF-beta1 and CTGF in human mesangial cells by exendin-4, a glucagon-like peptide-1 receptor agonist. Cell. Physiol. Biochem. 30, 749–757 (2012)

    Article  PubMed  Google Scholar 

  29. A. Shrivastava, C. Radziejewski, E. Campbell, L. Kovac, M. McGlynn, T.E. Ryan, S. Davis, M.P. Goldfarb, D.J. Glass, G. Lemke, G.D. Yancopoulos, An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol. Cell 1, 25–34 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. R.J. Colbran, A.M. Brown, Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr. Opin. Neurobiol. 14, 318–327 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. J.E. Lisman, A.M. Zhabotinsky, A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31, 191–201 (2001)

    Article  CAS  PubMed  Google Scholar 

  32. K.U. Bayer, H. Schulman, Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem. Biophys. Res. Commun. 289, 917–923 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. J. Lisman, H. Schulman, H. Cline, The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190 (2002)

    Article  CAS  PubMed  Google Scholar 

  34. C.C. Fink, T. Meyer, Molecular mechanisms of CaMKII activation in neuronal plasticity. Curr. Opin. Neurobiol. 12, 293–299 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. Y.Y. Wang, R. Zhao, H. Zhe, The emerging role of CaMKII in cancer. Oncotarget 6, 11725–11734 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  36. M.A. Torres, J.A. Yang-Snyder, S.M. Purcell, A.A. DeMarais, L.L. McGrew, R.T. Moon, Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell. Biol. 133, 1123–1137 (1996)

    Article  CAS  PubMed  Google Scholar 

  37. A. Koehler, J. Schlupf, M. Schneider, B. Kraft, C. Winter, J. Kashef, Loss of Xenopus cadherin-11 leads to increased Wnt/beta-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Dev. Biol. 383, 132–145 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. T. Ishitani, S. Kishida, J. Hyodo-Miura, N. Ueno, J. Yasuda, M. Waterman, H. Shibuya, R.T. Moon, J. Ninomiya-Tsuji, K. Matsumoto, The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol. Cell. Biol. 23, 131–139 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. T.W. Austin, G.P. Solar, F.C. Ziegler, L. Liem, W. Matthews, A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 89, 3624–3635 (1997)

    CAS  PubMed  Google Scholar 

  40. R.V. Iozzo, I. Eichstetter, K.G. Danielson, Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer. Res. 55, 3495–3499 (1995)

    CAS  PubMed  Google Scholar 

  41. S. Lejeune, E.L. Huguet, A. Hamby, R. Poulsom, A.L. Harris, Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin. Cancer. Res. 1, 215–222 (1995)

    CAS  PubMed  Google Scholar 

  42. T. Saitoh, M. Katoh, Molecular cloning and characterization of human WNT5B on chromosome 12p13.3 region. Int. J. Oncol. 19, 347–351 (2001)

    CAS  PubMed  Google Scholar 

  43. D.J. Van Den Berg, A.K. Sharma, E. Bruno, R. Hoffman, Role of members of the Wnt gene family in human hematopoiesis. Blood 92, 3189–3202 (1998)

    Google Scholar 

  44. D.C. Slusarski, J. Yang-Snyder, W.B. Busa, R.T. Moon, Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev. Biol. 182, 114–120 (1997)

    Article  CAS  PubMed  Google Scholar 

  45. A. Schambony, D. Wedlich, Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev. Cell 12, 779–792 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. T. Ishitani, J. Ninomiya-Tsuji, K. Matsumoto, Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling. Mol. Cell Biol. 23, 1379–1389 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. A.J. Mikels, R. Nusse, Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4, e115 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by grants from the Industrial Technology Research and Development funding projects, Guangdong Province (No. 2012A030400006); Guangzhou Municipal Science and Technology special fund (No. 1346000270); Medical and Health Major projects, Zhongshan (No.2016B1001); Doctoral Fund of Ministry of Education, China (No. 20130171110067); Sun Yat-sen University Clinical Research 5010 Program; Special Fund for Public Service of Ministry of Health, China (No. 201502007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Xinger Wu and Weiwei Liang contribute equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Liang, W., Guan, H. et al. Exendin-4 promotes pancreatic β-cell proliferation via inhibiting the expression of Wnt5a. Endocrine 55, 398–409 (2017). https://doi.org/10.1007/s12020-016-1160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1160-x

Keywords

Navigation