Skip to main content

Advertisement

Log in

Mitochondrial DNA Copy Number in Peripheral Blood as a Potential Non-invasive Biomarker for Multiple Sclerosis

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The impaired mitochondrial function has been implicated in the pathogenicity of multiple sclerosis (MS), a chronic inflammatory, demyelinating, and neurodegenerative disease of the CNS. Circulating mtDNA copy number in body fluids has been proposed as an indicator for several neurodegenerative diseases, and the altered cerebrospinal fluid mtDNA has been shown as a promising marker for MS. The aim of this study was to determine changes and biomarker potential of circulating mtDNA in peripheral blood in MS. The mtDNA copy number was quantified by real-time PCR in blood samples from 60 patients with relapsing–remitting MS (RRMS) and 64 healthy controls. The RRMS patients had significantly lower circulating mtDNA copy number compared to controls. Subgroup analysis with stratification of RRMS patients based on disease duration under or over 10 years revealed that the mtDNA copy number was significantly lower in the group with longer disease duration. A negative correlation was observed between mtDNA copy number and disease duration. The ROC curve analysis indicated a significant ability of mtDNA copy number to separate RRMS patients from controls with an AUC of 0.859. This is the first study to measure peripheral blood mtDNA copy number in MS patients. Current data suggest that the reduction in peripheral blood mtDNA copy number may be an early event in MS and correlate with the disease progression. The findings of this study indicate that circulating blood-based mtDNA copy number may be a potential non-invasive candidate biomarker for mitochondria-mediated neurodegeneration and MS. This can put forward the clinical applicability over other invasive markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Kafaji, G., & Golbahar, J. (2013). High glucose-induced oxidative stress increases the copy number of mitochondrial DNA in human mesangial cells. BioMed Research International,2013, 754946.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Kafaji, G., Sabry, M. A., & Bakhiet, M. (2016a). Increased expression of mitochondrial DNA-encoded genes in human renal mesangial cells in response to high glucose-induced reactive oxygen species. Molecular Medicine Reports,13(2), 1774–1780.

    Article  CAS  PubMed  Google Scholar 

  • Al-Kafaji, G., Sabry, M. A., & Skrypnyk, C. (2016b). Time-course effect of high glucose-induced reactive oxygen species on mitochondrial biogenesis and function in human renal mesangial cells. Cell Biology International,40(1), 36–48.

    Article  CAS  PubMed  Google Scholar 

  • Al-Kafaji, G., AlJadaan, A., Kamal, A., & Bakhiet, M. (2018). Peripheral blood mitochondrial DNA copy number is a potential new biomarker for diabetic nephropathy in type 2 diabetes patients. Experimental and Therapeutic Medicine,16(2), 1483–1492.

    PubMed  PubMed Central  Google Scholar 

  • Andalib, S., Talebi, M., Sakhinia, E., Farhiudi, M., Sadeghi-Bazargani, H., Motavallian, A., et al. (2013). Multiple sclerosis and mitochondrial gene variations: A review. Journal of the Neurological Sciences,330(1–2), 10–15.

    Article  CAS  PubMed  Google Scholar 

  • Blokhin, A., Vyshkina, T., Komoly, S., & Kalman, B. (2008). Variations in mitochondrial DNA copy numbers in MS brains. Journal of Molecular Neuroscience,35(3), 283–287.

    Article  CAS  PubMed  Google Scholar 

  • Bohr, V. A. (2002). Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radical Biology and Medicine,32(9), 804–812.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, G. R., Ziabreva, I., Reeve, A. K., Krishnan, K. J., Reynolds, R., Howell, O., et al. (2011). Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Annals of Neurology,69(3), 481–492.

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira, J. J., Compston, D. A. S., Geraldes, R., Rosa, M. M., Schmierer, K., Thompson, A., et al. (2018). Time matters in multiple sclerosis: Can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis? Journal of Neurology, Neurosurgery, and Psychiatry,89, 844–850.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Li, Z., He, Y., Zhang, F., Li, H., Liao, Y., et al. (2015). Elevated mitochondrial DNA copy number in peripheral blood cells is associated with childhood autism. BMC Psychiatry,15, 50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clay-Montier, L. L., Deng, J. J., Bai, Y., et al. (2009). Number matters: Control of mammalian mitochondrial DNA copy number. Journal of Genetics and Genomics,36, 125–131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Stefano, N., Stromillo, M. L., Giorgio, A., Bartolozzi, M. L., Battaglini, M., Baldini, M., et al. (2016). Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry,87, 93–99.

    Article  PubMed  Google Scholar 

  • Delbarba, A., Abate, G., Prandelli, C., Marziano, M., Buizza, L., Varas, N. A., et al. (2016). Mitochondrial Alterations in peripheral mononuclear blood cells from Alzheimer’s disease and mild cognitive impairment patients. Oxidative Medicine and Cellular Longevity,2016, 5923938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta, R., McDonough, J., Yin, X., Peterson, J., Chang, A., Torres, T., et al. (2006). Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Annals of Neurology,59, 478–489.

    Article  CAS  PubMed  Google Scholar 

  • Errea, O., Moreno, B., Conzalez-Franquesa, A., Garcia-Roves, P. M., & Villoslada, P. (2015). The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation,12, 152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franco-Iborra, S., Vila, M., & Perier, C. (2018). Mitochondrial quality control in neurodegenerative diseases: Focus on Parkinson's disease and Huntington's disease. Frontiers in Neuroscience,12, 342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia, I., Jones, E., Ramos, M., Innis-Whitehouse, W., & Gilkerson, R. (2017). The little big genome: The organization of mitochondrial DNA. Frontiers in Bioscience,22, 710–721.

    Article  CAS  Google Scholar 

  • Grunewald, A., Rygiel, K. A., Hepplewhite, P. D., Morris, C. M., Picard, M., Hom, D., et al. (2016). Mitochondrial DNA depletion in respiratory chain–deficient Parkinson disease neurons. Annals of Neurology,79(3), 366–378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hampel, H., O’Bryant, S. E., Molinuevo, J. L., Zetterberg, H., Masters, C. L., Lista, S., et al. (2018). Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nature Reviews Neurology,14(11), 639–652.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris, V. K., Tuddenham, J. F., & Sadiq, S. A. (2017). Biomarkers of multiple sclerosis: Current findings. Degenerative Neurological and Neuromuscular Disease,7, 19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Pedro, N. Y., Espinosa-Ramirez, G., de la Cruz, V. P., Pineda, B., & Sotelo, J. (2013). Initial immunopathogenesis of multiple sclerosis: Innate immune response. Clinical & Developmental Immunology,2013, 413465.

    Article  CAS  Google Scholar 

  • Hu, L., Yao, X., & Shen, Y. (2016). Altered mitochondrial DNA copy number contributes to human cancer risk: Evidence from an updated meta-analysis. Scientific Reports,6, 35859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulgan, T., Kallianpur, A. R., Guo, Y., Barnholtz, J. S., Gittleman, H., Brown, T. T., et al. (2019). Peripheral blood mitochondrial DNA copy number obtained from genome-wide genotype data is associated with neurocognitive impairment in persons with chronic HIV infection. Journal of Acquired Immune Deficiency Syndromes,80(4), e95–e102.

    Article  CAS  PubMed  Google Scholar 

  • Hurtado-Roca, Y., Ledesma, M., Gonzalez-Lazaro, M., Moreno-Loshuertos, R., Fernandez-Silva, P., Enriquez, J. A., et al. (2016). Adjusting mtDNA quantification in whole blood for peripheral blood platelet and leukocyte counts. PLoS ONE,11(10), e0163770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ide, T., Tsutsu, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research,88, 529–535.

    Article  CAS  PubMed  Google Scholar 

  • Johri, A., & Beal, M. F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. Journal of Pharmacology and Experimental Therapeutics,342(3), 619–630.

    Article  CAS  PubMed  Google Scholar 

  • Kilbaugh, T. J., Lvova, M., Karlsson, M., Zhang, Z., Leipzig, J., Wallace, D. C., et al. (2015). Peripheral blood mitochondrial DNA as a biomarker of cerebral mitochondrial dysfunction following traumatic brain injury in a porcine model. PLoS ONE,10(6), e0130927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, H. C., & Wei, Y. H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. The International Journal of Biochemistry & Cell Biology,37, 822–834.

    Article  CAS  Google Scholar 

  • Lee, H., Song, J. H., Shine, C. S., Park, D. J., Park, K. S., Lee, K. U., et al. (1998). Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Research and Clinical Practice,42, 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Leurs, C. E., Podlesniy, P., Trullas, R., Balk, L., Steenwijk, M. D., Malekzadeh, A., et al. (2018). Cerebrospinal fluid mtDNA concentration is elevated in multiple sclerosis disease and responds to treatment. Multiple Sclerosis Journal,24(4), 472–480.

    Article  CAS  PubMed  Google Scholar 

  • Loma, I., & Heyman, R. (2011). Multiple sclerosis: Pathogenesis and treatment. Current Neuropharmacology,9, 409–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowes, H., Pyle, A., Duddy, M., & Hudson, G. (2008). Cell-free mitochondrial DNA in progressive multiple sclerosis. Journal of Molecular Neuroscience,35(3), 283–287.

    Article  CAS  Google Scholar 

  • Mahad, D., Lassmann, H., & Turnbull, D. (2008). Review: Mitochondria and disease progression in multiple sclerosis. Neuropathology and Applied Neurobiology,34, 577–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manuelidis, L. (2011). Nuclease resistant circular DNAs copurify with infectivity in scrapie and CJD. The Journal of NeuroVirology,17, 131–145.

    Article  CAS  PubMed  Google Scholar 

  • Mao, P., & Reddy, P. H. (2010). Is multiple sclerosis a mitochondrial disease? Biochimica et Biophysica Acta,1802, 66–79.

    Article  CAS  PubMed  Google Scholar 

  • Morais, V. A., & De Strooper, B. (2010). Mitochondria dysfunction and neurodegenerative disorders: Cause or consequence. Journal of Alzheimer's Disease,20, S255–S263.

    Article  PubMed  Google Scholar 

  • Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., & Weinshenker, B. G. (2000). Multiple sclerosis. The New England Journal of Medicine,343, 938–952.

    Article  CAS  PubMed  Google Scholar 

  • O'Gorman, C., Lucas, R., & Taylor, B. (2012). Environmental risk factors for multiple sclerosis: A review with a focus on molecular mechanisms. International Journal of Molecular Sciences,13(9), 11718–11752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen, M. H., Budtz-Jorgensen, E., Sorensen, S. A., Nielsen, J. E., Hjermind, L. E., Vinther-Jensen, T., et al. (2014). Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington's disease. Mitochondrion,17, 14–21.

    Article  CAS  PubMed  Google Scholar 

  • Podlesniy, P., Figueiro-Silva, J., Llado, A., Sanchez-Valle, R., Alcolea, D., et al. (2013). Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Annals of Neurology,74(5), 655–668.

    Article  CAS  PubMed  Google Scholar 

  • Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology,69(2), 292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyle, A., Brennan, R., Kurzawa-Akanbi, M., Yarnall, A., Thouin, A., Mollenhauer, B., et al. (2015). Reduced cerebrospinal fluid mitochondrial DNA is a biomarker for early stage Parkinson's disease. Annals of Neurology,78(6), 1000–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyle, A., Anugrha, H., Kurzawa-Akanbi, M., Yarnall, A., Burn, D., & Hudson, G. (2016). Reduced mitochondrial DNA copy number is a biomarker of Parkinson's disease. Neurobiology Aging,38, 216.e7–216.e10.

    Article  CAS  Google Scholar 

  • Rice, A. C., Keeney, P. M., Algarzae, N. K., Ladd, A. C., Thomas, R. R., & Bennett, J. P., Jr. (2014). Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer's disease hippocampi. Journal of Alzheimer's Disease,40, 319–330.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Santiago, B., Casademont, J., & Nunes, V. (2001). Is mitochondrial DNA depletion involved in Alzheimer's disease? European Journal of Human Genetics,9, 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, M., & Kuroiwa, T. (1991). Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Experimental Cell Research,196, 137–140.

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenbach, H., Hoon, D. S., & Pantel, K. (2011). Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer,11, 426–437.

    Article  CAS  PubMed  Google Scholar 

  • Shen, J., Gopalakrishnan, V., Lee, J. E., Fang, S., & Zhao, H. (2015). Mitochondrial DNA copy number in peripheral blood and melanoma risk. PLoS ONE,10(6), e0131649.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silzer, T., Barber, R., Sun, J., Pathak, G., Johnson, L., O’Bryant, S., et al. (2019). Circulating mitochondrial DNA: New indices of type 2 diabetes-related cognitive impairment in Mexican Americans. PLoS ONE,14(3), e0213527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, J., Oh, J. Y., Sung, Y.-A., Pak, Y. K., Park, K. S., & Lee, H. K. (2001). Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients. Diabetes Care,24(5), 865–869.

    Article  CAS  PubMed  Google Scholar 

  • Trojano, M., Paolicelli, D., Bellacosa, A., & Cataldo, S. (2003). The transition from relapsing–remitting MS to irreversible disability: Clinical evaluation. Neurological Sciences,24(Suppl. 5), S268–S270.

    Article  PubMed  Google Scholar 

  • Tsujii, N., Otsuka, I., Okazaki, S., Yanagi, M., Numata, S., Yamaki, N., et al. (2019). Mitochondrial DNA copy number raises the potential of left frontopolar hemodynamic response as a diagnostic marker for distinguishing bipolar disorder from major depressive disorder. Frontiers in Psychiatry,8(10), 312.

    Article  Google Scholar 

  • Weinshenker, B. G., Bass, B., Rice, G. P., Noseworthy, J., Carriere, W., Baskerville, J., et al. (1989). The natural history of multiple sclerosis: A geographically based study I. Clinical course and disability. Brain,112(Pt 1), 133–146.

    Article  PubMed  Google Scholar 

  • Xia, P., An, H. X., Dang, C. X., Radpour, R., Kohler, C., Fokas, E., et al. (2009). Decreased mitochondrial DNA content in blood samples of patients with stage I breast cancer. BMC Cancer,9, 454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia, C.-Y., Liu, Y., Yang, H. R., Yang, H. Y., Liu, J. X., & Qi, Y. (2017). Reference intervals of mitochondrial DNA copy number in peripheral blood for Chinese minors and adults. Chinese Medical Journal,130(20), 2435–2440.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., et al. (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature,464, 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, H., Chang, D., Ye, Y., Shen, J., Chow, W., Wu, X., et al. (2018). Associations of blood mitochondrial DNA copy number with social-demographics and cancer risk: Results from the Mano-AMano Mexican American Cohort. Oncotarget,9(39), 2549–25502.

    Article  Google Scholar 

  • Zuvich, R. L., McCauley, J. L., Pericak-Vance, M. A., & Haines, J. L. (2009). Genetics and pathogenesis of multiple sclerosis. Seminars in Immunology,21(6), 328–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The technical support with sample collection and transportation in Saudi Arabia by MAA is gratefully acknowledged. This study was funded by a research Grant (No: 37-PI-01/15) from the College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by GA-K, HFB, MAA, and AAF. Data collection and analysis were performed by GA-K, MJ, BHE, and MB. The first draft of the manuscript was written by GA-K and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ghada Al-Kafaji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Kafaji, G., Bakheit, H.F., Alharbi, M.A. et al. Mitochondrial DNA Copy Number in Peripheral Blood as a Potential Non-invasive Biomarker for Multiple Sclerosis. Neuromol Med 22, 304–313 (2020). https://doi.org/10.1007/s12017-019-08588-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-019-08588-w

Navigation