Skip to main content

Advertisement

Log in

Epigenetics and Vasculitis: a Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Vasculitides represent a group of relatively rare systemic inflammatory diseases of the blood vessels. Despite recent progress in understanding the genetic basis and the underlying pathogenic mechanisms in vasculitis, the etiology and pathogenesis of vasculitis remain incompletely understood. Epigenetic dysregulation plays an important role in immune-mediated diseases, and the contribution of epigenetic aberrancies in vasculitis is increasingly being recognized. Histone modifications in the PR3 and MPO gene loci might be mechanistically involved in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Similarly, other studies revealed important epigenetic contribution to other vasculitides, including Kawasaki disease and IgA vasculitis. More recently, genome-wide epigenomic studies have been performed in several vasculitides. A recent genome-wide DNA methylation study uncovered an important role for epigenetic remodeling of cytoskeleton-related genes in the pathogenesis of Behçet’s disease and suggested that reversal of some of these DNA methylation changes associates with disease remission. Genome-wide DNA methylation profiling characterized the inflammatory response in temporal artery tissue from patients with giant cell arteritis and showed increased activation of calcineurin/nuclear factor of activated T cells (NFAT) signaling, prompting the suggestion that a specific calcineurin/NFAT inhibitor that is well tolerated and with the added beneficial anti-platelet activity, such as dipyridamole, might be of therapeutic potential in giant cell arteritis. While epigenetic studies in systemic vasculitis are still in their infancy, currently available data clearly indicate that investigating the epigenetic mechanisms underlying these diseases will help to better understand the pathogenesis of vasculitis and provide novel targets for the development of disease biomarkers and new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jennette JC et al (2013) 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 65(1):1–11

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman GS, Calabrese LH (2014) Vasculitis: determinants of disease patterns. Nat Rev Rheumatol 10(8):454–62

    Article  PubMed  Google Scholar 

  3. Carmona FD, Martin J, Gonzalez-Gay MA (2015) Genetics of vasculitis. Curr Opin Rheumatol 27(1):10–7

    Article  CAS  PubMed  Google Scholar 

  4. Miller FW et al (2012) Epidemiology of environmental exposures and human autoimmune diseases: findings from a National Institute of Environmental Health Sciences Expert Panel Workshop. J Autoimmun 39(4):259–71

    Article  PubMed  PubMed Central  Google Scholar 

  5. Selmi C et al (2012) Mechanisms of environmental influence on human autoimmunity: a National Institute of Environmental Health Sciences expert panel workshop. J Autoimmun 39(4):272–84

    Article  PubMed  Google Scholar 

  6. Stratta P et al (2001) The role of metals in autoimmune vasculitis: epidemiological and pathogenic study. Sci Total Environ 270(1–3):179–90

    Article  CAS  PubMed  Google Scholar 

  7. Lane SE et al (2003) Are environmental factors important in primary systemic vasculitis? A case–control study. Arthritis Rheum 48(3):814–23

    Article  PubMed  Google Scholar 

  8. Hogan SL et al (2007) Association of silica exposure with anti-neutrophil cytoplasmic autoantibody small-vessel vasculitis: a population-based, case–control study. Clin J Am Soc Nephrol 2(2):290–9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cartin-Ceba R, Peikert T, Specks U (2012) Pathogenesis of ANCA-associated vasculitis. Curr Rheumatol Rep 14(6):481–93

    Article  CAS  PubMed  Google Scholar 

  10. Lidar M et al (2012) Infectious serologies and autoantibodies in hepatitis C and autoimmune disease-associated mixed cryoglobulinemia. Clin Rev Allergy Immunol 42(2):238–46

    Article  CAS  PubMed  Google Scholar 

  11. Chimenti MS et al (2014) Vasculitides and the complement system: a comprehensive review. Clin Rev Allergy Immunol

  12. Konstantinov KN, Ulff-Moller CJ, Tzamaloukas AH (2015) Infections and antineutrophil cytoplasmic antibodies: triggering mechanisms. Autoimmun Rev 14(3):201–3

    Article  CAS  PubMed  Google Scholar 

  13. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286(5439):481–6

    Article  CAS  PubMed  Google Scholar 

  14. Lu Q (2013) The critical importance of epigenetics in autoimmunity. J Autoimmun 41:1–5

    Article  PubMed  Google Scholar 

  15. Lister R et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Renauer PA, Coit P, Sawalha AH (2015) The DNA methylation signature of human TCRalphabeta+CD4-CD8- double negative T cells reveals CG demethylation and a unique epigenetic architecture permissive to a broad stimulatory immune response. Clin Immunol 156(1):19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Balada E, Ordi-Ros J, Vilardell-Tarres M (2007) DNA methylation and systemic lupus erythematosus. Ann N Y Acad Sci 1108:127–36

    Article  CAS  PubMed  Google Scholar 

  18. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bird AP, Wolffe AP (1999) Methylation-induced repression—belts, braces, and chromatin. Cell 99(5):451–4

    Article  CAS  PubMed  Google Scholar 

  20. Surani MA (1998) Imprinting and the initiation of gene silencing in the germ line. Cell 93(3):309–12

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y et al (2013) Impaired DNA methylation and its mechanisms in CD4(+)T cells of systemic lupus erythematosus. J Autoimmun 41:92–9

    Article  PubMed  Google Scholar 

  22. Gupta B, Hawkins RD (2015) Epigenomics of autoimmune diseases. Immunol Cell Biol 93(3):271–6

    Article  CAS  PubMed  Google Scholar 

  23. Bhaumik SR, Smith E, Shilatifard A (2007) Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 14(11):1008–16

    Article  CAS  PubMed  Google Scholar 

  24. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  25. Lee GR et al (2006) T helper cell differentiation: regulation by cis elements and epigenetics. Immunity 24(4):369–79

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y et al (2013) Epigenetics in immune-mediated pulmonary diseases. Clin Rev Allergy Immunol 45(3):314–30

    Article  CAS  PubMed  Google Scholar 

  27. Deng X et al (2015) The role of microRNAs in autoimmune diseases with skin involvement. Scand J Immunol 81(3):153–65

    Article  CAS  PubMed  Google Scholar 

  28. Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature 431(7006):338–42

    Article  CAS  PubMed  Google Scholar 

  29. Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19(6):586–93

    Article  CAS  PubMed  Google Scholar 

  30. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–97

    Article  CAS  PubMed  Google Scholar 

  31. Singh RP et al (2013) The role of miRNA in inflammation and autoimmunity. Autoimmun Rev 12(12):1160–5

    Article  CAS  PubMed  Google Scholar 

  32. Zeng L et al (2014) The emerging role of circulating microRNAs as biomarkers in autoimmune diseases. Autoimmunity 47(7):419–29

    Article  CAS  PubMed  Google Scholar 

  33. Hilhorst M et al (2015) Proteinase 3-ANCA vasculitis versus myeloperoxidase-ANCA vasculitis. J Am Soc Nephrol

  34. Calafat J et al (1990) In situ localization by double-labeling immunoelectron microscopy of anti-neutrophil cytoplasmic autoantibodies in neutrophils and monocytes. Blood 75(1):242–50

    CAS  PubMed  Google Scholar 

  35. van der Woude FJ et al (1985) Autoantibodies against neutrophils and monocytes: tool for diagnosis and marker of disease activity in Wegener’s granulomatosis. Lancet 1(8426):425–9

    Article  PubMed  Google Scholar 

  36. Falk RJ, Jennette JC (1988) Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 318(25):1651–7

    Article  CAS  PubMed  Google Scholar 

  37. Goeken JA (1991) Antineutrophil cytoplasmic antibody—a useful serological marker for vasculitis. J Clin Immunol 11(4):161–74

    Article  CAS  PubMed  Google Scholar 

  38. Cohen Tervaert JW, Damoiseaux J (2012) Antineutrophil cytoplasmic autoantibodies: how are they detected and what is their use for diagnosis, classification and follow-up? Clin Rev Allergy Immunol 43(3):211–9

    Article  CAS  PubMed  Google Scholar 

  39. Tervaert JW et al (1990) Association of autoantibodies to myeloperoxidase with different forms of vasculitis. Arthritis Rheum 33(8):1264–72

    Article  CAS  PubMed  Google Scholar 

  40. Falk RJ et al (1990) Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci U S A 87(11):4115–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Little MA et al (2005) Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo. Blood 106(6):2050–8

    Article  CAS  PubMed  Google Scholar 

  42. Xiao H et al (2002) Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest 110(7):955–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao H et al (2007) Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol 170(1):52–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeisberg M (2011) ANCA vasculitis meets epigenetics—closing in on the molecular roots of disease. Nephrol Dial Transplant 26(4):1146–8

    Article  PubMed  Google Scholar 

  45. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89(10):3503–21

    CAS  PubMed  Google Scholar 

  46. Cowland JB, Borregaard N (1999) The individual regulation of granule protein mRNA levels during neutrophil maturation explains the heterogeneity of neutrophil granules. J Leukoc Biol 66(6):989–95

    CAS  PubMed  Google Scholar 

  47. Yang JJ et al (2004) Circumvention of normal constraints on granule protein gene expression in peripheral blood neutrophils and monocytes of patients with antineutrophil cytoplasmic autoantibody-associated glomerulonephritis. J Am Soc Nephrol 15(8):2103–14

    Article  CAS  PubMed  Google Scholar 

  48. Ciavatta DJ et al (2010) Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis. J Clin Invest 120(9):3209–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Luo S et al (2013) Aberrant histone modifications in peripheral blood mononuclear cells from patients with Henoch–Schonlein purpura. Clin Immunol 146(3):165–75

    Article  CAS  PubMed  Google Scholar 

  50. Kuo HC et al (2015) Identification of an association between genomic hypomethylation of FCGR2A and susceptibility to Kawasaki disease and intravenous immunoglobulin resistance by DNA methylation array. Arthritis Rheumatol 67(3):828–36

    Article  CAS  PubMed  Google Scholar 

  51. Ryu J et al (2007) FcgammaRIIa mediates C-reactive protein-induced inflammatory responses of human vascular smooth muscle cells by activating NADPH oxidase 4. Cardiovasc Res 75(3):555–65

    Article  CAS  PubMed  Google Scholar 

  52. Hughes T et al (2014) Epigenome-wide scan identifies a treatment-responsive pattern of altered DNA methylation among cytoskeletal remodeling genes in monocytes and CD4+ T cells from patients with Behcet’s disease. Arthritis Rheumatol 66(6):1648–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Coit P et al (2015) DNA methylation analysis of the temporal artery microenvironment in giant cell arteritis. Ann Rheum Dis. doi:10.1136/annrheumdis-2014-207116

    Google Scholar 

  54. Audemard-Verger A et al (2015) IgA vasculitis (Henoch–Shonlein purpura) in adults: diagnostic and therapeutic aspects. Autoimmun Rev 14(7):579–585

    Article  CAS  PubMed  Google Scholar 

  55. Ni FF et al (2014) Regulatory T cell microRNA expression changes in children with acute Kawasaki disease. Clin Exp Immunol 178(2):384–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo MM et al (2015) Th17- and Treg-related cytokine and mRNA expression are associated with acute and resolving Kawasaki disease. Allergy 70(3):310–8

    Article  CAS  PubMed  Google Scholar 

  57. Shimizu C et al (2013) Differential expression of miR-145 in children with Kawasaki disease. PLoS One 8(3), e58159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yun KW et al (2014) Elevated serum level of microRNA (miRNA)-200c and miRNA-371-5p in children with Kawasaki disease. Pediatr Cardiol 35(5):745–52

    Article  PubMed  Google Scholar 

  59. Magenta A et al (2011) miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 18(10):1628–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li Y et al (2015) The SOX17/miR-371-5p/SOX2 axis inhibits EMT, stem cell properties and metastasis in colorectal cancer. Oncotarget 6(11):9099–112

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhou Q et al (2012) Decreased microRNA-155 expression in ocular Behcet’s disease but not in Vogt Koyanagi Harada syndrome. Invest Ophthalmol Vis Sci 53(9):5665–74

    Article  CAS  PubMed  Google Scholar 

  62. Tang Y et al (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60(4):1065–75

    Article  CAS  PubMed  Google Scholar 

  63. Zhou Q et al (2014) MicroRNA-146a and Ets-1 gene polymorphisms in ocular Behcet’s disease and Vogt–Koyanagi–Harada syndrome. Ann Rheum Dis 73(1):170–6

    Article  CAS  PubMed  Google Scholar 

  64. Qi J et al (2013) A functional variant of pre-miRNA-196a2 confers risk for Behcet’s disease but not for Vogt–Koyanagi–Harada syndrome or AAU in ankylosing spondylitis. Hum Genet 132(12):1395–404

    Article  CAS  PubMed  Google Scholar 

  65. Yu H et al (2014) Predisposition to Behcet’s disease and VKH syndrome by genetic variants of miR-182. J Mol Med (Berl) 92(9):961–7

    Article  CAS  Google Scholar 

  66. Stittrich AB et al (2010) The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol 11(11):1057–62

    Article  CAS  PubMed  Google Scholar 

  67. Ambrose NL, Haskard DO (2013) Differential diagnosis and management of Behcet syndrome. Nat Rev Rheumatol 9(2):79–89

    Article  CAS  PubMed  Google Scholar 

  68. Mat MC et al (2014) Behcet’s disease as a systemic disease. Clin Dermatol 32(3):435–42

    Article  PubMed  Google Scholar 

  69. Tulunay A et al (2015) Activation of the JAK/STAT pathway in Behcet’s disease. Genes Immun 16(2):170–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hirohata S (2008) Histopathology of central nervous system lesions in Behcet’s disease. J Neurol Sci 267(1–2):41–7

    Article  CAS  PubMed  Google Scholar 

  71. Direskeneli H, Fujita H, Akdis CA (2011) Regulation of TH17 and regulatory T cells in patients with Behcet disease. J Allergy Clin Immunol 128(3):665–6

    Article  CAS  PubMed  Google Scholar 

  72. Geri G et al (2011) Critical role of IL-21 in modulating TH17 and regulatory T cells in Behcet disease. J Allergy Clin Immunol 128(3):655–64

    Article  CAS  PubMed  Google Scholar 

  73. Aktas Cetin E et al (2014) IL-22-secreting Th22 and IFN-gamma-secreting Th17 cells in Behcet’s disease. Mod Rheumatol 24(5):802–7

    Article  CAS  PubMed  Google Scholar 

  74. Ceppi M et al (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106(8):2735–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. O’Connell RM et al (2010) MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33(4):607–19

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hu R et al (2013) MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression. J Immunol 190(12):5972–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu Z et al (2007) Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res 35(13):4535–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Paine A et al (2010) Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol 80(12):1895–903

    Article  CAS  PubMed  Google Scholar 

  79. Gonzalez-Gay MA et al (2009) Epidemiology of giant cell arteritis and polymyalgia rheumatica. Arthritis Rheum 61(10):1454–61

    Article  PubMed  Google Scholar 

  80. De Smit E, Palmer AJ, Hewitt AW (2015) Projected worldwide disease burden from giant cell arteritis by 2050. J Rheumatol 42(1):119–25

    Article  PubMed  Google Scholar 

  81. Djuretic IM et al (2007) Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol 8(2):145–53

    Article  CAS  PubMed  Google Scholar 

  82. Grewal IS, Flavell RA (1996) The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev 153:85–106

    Article  CAS  PubMed  Google Scholar 

  83. Flanagan WM et al (1991) Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352(6338):803–7

    Article  CAS  PubMed  Google Scholar 

  84. Schaufelberger C et al (2006) No additional steroid-sparing effect of cyclosporine A in giant cell arteritis. Scand J Rheumatol 35(4):327–9

    Article  CAS  PubMed  Google Scholar 

  85. Naesens M, Kuypers DR, Sarwal M (2009) Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 4(2):481–508

    CAS  PubMed  Google Scholar 

  86. Balakumar P et al (2014) Classical and pleiotropic actions of dipyridamole: not enough light to illuminate the dark tunnel? Pharmacol Res 87:144–50

    Article  CAS  PubMed  Google Scholar 

  87. Mulero MC et al (2009) Inhibiting the calcineurin-NFAT (nuclear factor of activated T cells) signaling pathway with a regulator of calcineurin-derived peptide without affecting general calcineurin phosphatase activity. J Biol Chem 284(14):9394–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kyttaris VC et al (2011) Calcium signaling in systemic lupus erythematosus T cells: a treatment target. Arthritis Rheum 63(7):2058–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Feil R, Fraga MF (2011) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13(2):97–109

    Google Scholar 

  90. Weyand CM, Liao YJ, Goronzy JJ (2012) The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. J Neuroophthalmol 32(3):259–65

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li Y et al (2010) Age-dependent decreases in DNA methyltransferase levels and low transmethylation micronutrient levels synergize to promote overexpression of genes implicated in autoimmunity and acute coronary syndromes. Exp Gerontol 45(4):312–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr H. Sawalha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renauer, P., Coit, P. & Sawalha, A.H. Epigenetics and Vasculitis: a Comprehensive Review. Clinic Rev Allerg Immunol 50, 357–366 (2016). https://doi.org/10.1007/s12016-015-8495-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-015-8495-6

Keywords

Navigation