Skip to main content

Advertisement

Log in

SNPs in MicroRNA-Binding Sites in the ITGB1 and ITGB3 3′-UTR Increase Colorectal Cancer Risk

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The purpose of the study was to investigate the potential associations between single-nucleotide polymorphisms (SNPs) in microRNA (miRNA)-binding sites in the integrin beta-1 (ITGB1) gene and integrin beta-3 (ITGB3) gene 3′-untranslated regions, and colorectal cancer (CRC) susceptibility in a Chinese population. A hospital-based case–control study was performed in 200 patients with CRC and 200 matched healthy donors. Two SNPs in miRNA binding of ITGB1 and ITGB3 genes (rs17468 and rs2317676) were genotyped by polymerase chain reaction-restrict fragment length polymorphism assay. The association between genotypes and CRC risk was evaluated by computing the odds ratio (OR) and 95 % confidence interval (CI) from multivariate unconditional logistic regression analyses. The frequency of the T genotype in ITGB1 rs17468 and G genotype in ITGB3 rs2317676 occurred more frequently in CRC patients than in controls (P < 0.05). We found that CT and TT genotypes of rs17468 were associated with a significantly increased risk of CRC (OR = 1.67, 95 % CI = 1.090–2.559 for CT + TT vs. CC), also the AG and GG genotype in ITGB3 rs2317676 (OR = 1.65, 95 % CI = 1.114–2.458 for AG + GG vs. AA). In conclusion, our results showed that both the ITGB1 rs17468 SNP and ITGB3 rs2317676 SNP were associated with an increased risk of CRC, which suggests that these 2 SNPs might contribute to CRC risk in a Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Peto, J. (2001). Cancer epidemiology in the last century and the next decade. Nature, 411(6835), 390–395. doi:10.1038/35077256.

    Article  CAS  PubMed  Google Scholar 

  2. Tsukuma, H., & Ajiki, W. (2003). Descriptive epidemiology of colorectal cancer-international comparison. Nippon Rinsho, 61(Suppl 7), 25–30.

    PubMed  Google Scholar 

  3. Mou, X., Chen, L., Liu, F., Lin, J., Diao, P., Wang, H., et al. (2012). Prevalence of JC virus in Chinese patients with colorectal cancer. PLoS One, 7(5), e35900. doi:10.1371/journal.pone.0035900.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Zheng, X., Wang, L., Zhu, Y., Guan, Q., Li, H., Xiong, Z., et al. (2012). The SNP rs961253 in 20p12.3 is associated with colorectal cancer risk: A case–control study and a meta-analysis of the published literature. PLoS One, 7(4), e34625. doi:10.1371/journal.pone.0034625.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Takatsuno, Y., Mimori, K., Yamamoto, K., Sato, T., Niida, A., Inoue, H., et al. (2013). The rs6983267 SNP is associated with MYC transcription efficiency, which promotes progression and worsens prognosis of colorectal cancer. Annals of Surgical Oncology, 20(4), 1395–1402. doi:10.1245/s10434-012-2657-z.

    Article  PubMed  Google Scholar 

  6. Ivaska, J., & Heino, J. (2000). Adhesion receptors and cell invasion: Mechanisms of integrin-guided degradation of extracellular matrix. Cellular and Molecular Life Sciences, 57(1), 16–24. doi:10.1007/s000180050496.

    Article  CAS  PubMed  Google Scholar 

  7. Hynes, R. O. (1992). Integrins: Versatility, modulation, and signaling in cell adhesion. Cell, 69(1), 11–25. doi:10.1016/0092-8674(92)90115-S.

    Article  CAS  PubMed  Google Scholar 

  8. Ruoslahti, E., & Pierschbacher, M. D. (1987). New perspectives in cell adhesion: RGD and integrins. Science, 238(4836), 491–497. doi:10.1126/science.2821619.

    Article  CAS  PubMed  Google Scholar 

  9. Seales, E. C., Jurado, G. A., Brunson, B. A., Wakefield, J. K., Frost, A. R., & Bellis, S. L. (2005). Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Research, 65(11), 4645–4652. doi:10.1158/0008-5472.CAN-04-3117.

    Article  CAS  PubMed  Google Scholar 

  10. Friedlander, M., Theesfeld, C. L., Sugita, M., Fruttiger, M., Thomas, M. A., Chang, S., et al. (1996). Involvement of integrins α v β3 and αv β 5 in ocular neovascular diseases. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9764–9769.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Brooks, P. C., Clark, R. A., & Cheresh, D. A. (1994). Requirement of vascular integrin α v β 3 for angiogenesis. Science, 264(5158), 569–571. doi:10.1126/science.7512751.

    Article  CAS  PubMed  Google Scholar 

  12. Gasparini, G., Brooks, P. C., Biganzoli, E., Vermeulen, P. B., Bonoldi, E., Dirix, L. Y., et al. (1998). Vascular integrin α (v) β3: A new prognostic indicator in breast cancer. Clinical Cancer Research, 4(11), 2625–2634.

    CAS  PubMed  Google Scholar 

  13. Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—MicroRNAs with a role in cancer. Nature Reviews Cancer, 6(4), 259–269. doi:10.1038/nrc1840.

    Article  CAS  PubMed  Google Scholar 

  14. Yu, Z., Li, Z., Jolicoeur, N., Zhang, L., Fortin, Y., Wang, E., et al. (2007). Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Research, 35(13), 4535–4541. doi:10.1093/nar/gkm480.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Landi, D., Gemignani, F., Barale, R., & Landi, S. (2008). A catalog of polymorphisms falling in microRNA binding regions of cancer genes. DNA and Cell Biology, 27(1), 35–43. doi:10.1089/dna.2007.0650.

    Article  CAS  PubMed  Google Scholar 

  16. Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16), 7065–7070. doi:10.1158/0008-5472.CAN-05-1783.

    Article  CAS  PubMed  Google Scholar 

  17. Scott, G. K., Goga, A., Bhaumik, D., Berger, C. E., Sullivan, C. S., & Benz, C. C. (2006). Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. Journal of Biological Chemistry, 282(2), 1479–1486. doi:10.1074/jbc.M609383200.

    Article  PubMed  Google Scholar 

  18. Duan, R., Pak, C., & Jin, P. (2007). Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Human Molecular Genetics, 16(9), 1124–1131. doi:10.1093/hmg/ddm062.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, S., Bell, K., Mousa, S. A., & Varner, J. A. (2000). Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. American Journal of Pathology, 156(4), 1345–1362. doi:10.1016/S0002-9440(10)65005-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Klein, S., de Fougerolles, A. R., Blaikie, P., Khan, L., Pepe, A., Green, C. D., et al. (2002). α5β1 integrin activates an NF-kappa B-dependent program of gene expression important for angiogenesis and inflammation. Molecular and Cellular Biology, 22(16), 5912–5922. doi:10.1128/MCB.22.16.5912-5922.2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Silletti, S., Kessler, T., Goldberg, J., Boger, D. L., & Cheresh, D. A. (2001). Disruption of matrix metal proteinase binding to integrin alphav beta3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proceedings of the National Academy of Sciences of the United States of America, 98(1), 119–124. doi:10.1073/pnas.98.1.119.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Chen, J. M., Ferec, C., & Cooper, D. N. (2006). A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes I: General principles and overview. Human Genetics, 120(1), 1–21. doi:10.1007/s00439-006-0180-7.

    Article  CAS  PubMed  Google Scholar 

  23. Song, F., Zheng, H., Liu, B., Wei, S., Dai, H., Zhang, L., et al. (2009). An miR-502-binding site single-nucleotide polymorphism in the 3′-untranslated region of the SET8 gene is associated with early age of breast cancer onset. Clinical Cancer Research, 15(19), 6292–6300. doi:10.1158/1078-0432.CCR-09-0826.

    Article  CAS  PubMed  Google Scholar 

  24. Ratner, E., Lu, L., Boeke, M., Barnett, R., Nallur, S., Chin, L. J., et al. (2010). A KRAS-variant in ovarian cancer acts as a genetic marker of cancer risk. Cancer Research, 70(16), 6509–6515. doi:10.1158/0008-5472.CAN-10-0689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Chin, L. J., Ratner, E., Leng, S., Zhai, R., Nallur, S., Babar, I., et al. (2008). A SNP in a let-7 micro RNA complementary site in the KARS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Research, 68(20), 8535–8540. doi:10.1158/0008-5472.CAN-08-2129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Dalmay, T., & Edwards, D. R. (2006). MicroRNAs and the hallmarks of cancer. Oncogene, 25(46), 6170–6175. doi:10.1038/sj.onc.1209911.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, J., Zhan, Z., Wu, J., Zhang, C., Yang, Y., Tong, S., et al. (2013). Association among polymorphisms in EGFR gene exons, lifestyle and risk of gastric cancer with gender differences in Chinese Han subjects. PLoS One, 8(3), e59254. doi:10.1371/journal.pone.0059254.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Magalhães, B., Peleteiro, B., & Lunet, N. (2012). Dietary patterns and colorectal cancer: Systematic review and meta-analysis. European Journal of Cancer Prevention, 21, 15–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, P., Li, Z., Jiang, H. et al. SNPs in MicroRNA-Binding Sites in the ITGB1 and ITGB3 3′-UTR Increase Colorectal Cancer Risk. Cell Biochem Biophys 70, 601–607 (2014). https://doi.org/10.1007/s12013-014-9962-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9962-z

Keywords

Navigation