Skip to main content

Advertisement

Log in

Effects of 2-Hydroxypropyl-Beta-Cyclodextrin on Cardiovascular Signs of Amitriptyline Poisoning in a Rat Model

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The aim of this study was to investigate the efficacy of 2-hydroxypropyl-beta-cyclodextrin (HPBCD) as an antidotal treatment for the in vivo cardiovascular effects of amitriptyline poisoning. Experiments were carried out on 33 Wistar rats. To evaluate cardiovascular effects of HPBCD, rats were infused with dextrose or HPBCD. In the poisoning model, amitriptyline (0.94 mg/kg/min) was infused until the mean arterial blood pressure (MAP) dropped to 50 % of the baseline. Following amitriptyline infusion, dextrose, low-dose HPBCD (4.19 mg/kg/min), or high-dose HPBCD (16.76 mg/kg/min) was infused, and MAP, heart rate (HR), and electrocardiogram were recorded for 60 min. Hearts were examined for tissue damage and apoptosis. HPBCD infusion alone did not yield significant difference for MAP, HR, QRS duration, QT interval, and cardiac tissue damage when compared to dextrose (p > 0.05). In the poisoning model, MAP and HR decreased, while QRS duration and QT interval prolonged significantly following amitriptyline infusion (p < 0.0167). Dextrose, low-dose HPBCD, and high-dose HPBCD infusion similarly corrected MAP, HR, QRS duration, and QT interval values at the end-experiment time point (p > 0.05). Histological scores for tissue damage and apoptosis showed no significant difference between the groups (p > 0.05). Based on our results, HPBCD did not show cardiovascular toxicity, while it was not more effective than dextrose for the treatment of amitriptyline poisoning. Further antidotal studies of cyclodextrins with higher doses and/or binding affinities are needed for poisonings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Unverir, P., Atilla, R., Karcioglu, O., Topacoglu, H., Demiral, Y., & Tuncok, Y. (2006). A retrospective analysis of antidepressant poisonings in the emergency department: 11-Year experience. Human and Experimental Toxicology, 25, 605–612.

    Article  CAS  PubMed  Google Scholar 

  2. Mowry, J. B., Spyker, D. A., Cantilena, L. R, Jr, McMillan, N., & Ford, M. (2014). 2013 Annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 31st Annual report. Clinical Toxicology (Philadelphia), 52, 1032–1283.

    Article  Google Scholar 

  3. Kerr, G. W., McGuffie, A. C., & Wilkie, S. (2001). Tricyclic antidepressant overdose: A review. Emergency Medicine Journal, 18, 236–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thanacoody, H. K., & Thomas, S. H. (2005). Tricyclic antidepressant poisoning: Cardiovascular toxicity. Toxicological Reviews, 24, 205–214.

    Article  CAS  PubMed  Google Scholar 

  5. Bateman, D. N. (2005). Tricyclic antidepressant poisoning: Central nervous system effects and management. Toxicological Reviews, 24, 181–186.

    Article  CAS  PubMed  Google Scholar 

  6. Bradberry, S. M., Thanacoody, H. K., Watt, B. E., Thomas, S. H., & Vale, J. A. (2005). Management of the cardiovascular complications of tricyclic antidepressant poisoning: Role of sodium bicarbonate. Toxicological Reviews, 24, 195–204.

    Article  CAS  PubMed  Google Scholar 

  7. Heard, K., Dart, R. C., Bogdan, G., O’Malley, G. F., Burkhart, K. K., Donovan, J. W., & Ward, S. B. (2006). A preliminary study of tricyclic antidepressant (TCA) ovine FAB for TCA toxicity. Clinical Toxicology (Philadelphia), 44, 275–281.

    Article  CAS  Google Scholar 

  8. Litonius, E., Niiya, T., Neuvonen, P. J., & Rosenberg, P. H. (2012). No antidotal effect of intravenous lipid emulsion in experimental amitriptyline intoxication despite significant entrapment of amitriptyline. Basic & Clinical Pharmacology & Toxicology, 110, 378–383.

    Article  CAS  Google Scholar 

  9. Heinonen, J. A., Litonius, E., Backman, J. T., Neuvonen, P. J., & Rosenberg, P. H. (2013). Intravenous lipid emulsion entraps amitriptyline into plasma and can lower its brain concentration—An experimental intoxication study in pigs. Basic & Clinical Pharmacology & Toxicology, 113, 193–200.

    Article  CAS  Google Scholar 

  10. Welliver, M., McDonough, J., Kalynych, N., & Redfern, R. (2009). Discovery, development, and clinical application of sugammadex sodium, a selective relaxant binding agent. Journal of Drug Design, Development and Therapy, 2, 49–59.

    PubMed  Google Scholar 

  11. Abrishami, A., Ho, J., Wong, J., Yin, L., & Chung, F. (2009). Sugammadex, a selective reversal medication for preventing postoperative residual neuromuscular blockade. Cochrane Database of Systematic Reviews, Oct 7, CD007362.

    Google Scholar 

  12. Georgiou, M. E., Georgiou, C. A., & Koupparis, M. A. (1999). Rapid automated spectrophotometric competitive complexation studies of drugs with cyclodextrins using the flow injection gradient technique: Tricyclic antidepressant drugs with alpha-cyclodextrin. Analyst, 124, 391–396.

    Article  CAS  Google Scholar 

  13. Junquera, E., Romero, J. C., & Aicart, E. (2001). Behavior of tricyclic antidepressants in aqueous solution: Self-aggregation and association with beta-cyclodextrin. Langmuir, 17, 1826–1832.

    Article  CAS  Google Scholar 

  14. Cano, J., Rodriguez, A., Aicart, E., & Junquera, E. (2007). Temperature effect on the complex formation between tricyclic antidepressant drugs (amitriptyline or imipramine) and hydroxypropyl-beta-cyclodextrin in water. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 59, 279–285.

    Article  CAS  Google Scholar 

  15. Stella, V. J., & He, Q. (2008). Cyclodextrins. Toxicologic Pathology, 36, 30–42.

    Article  CAS  PubMed  Google Scholar 

  16. Gould, S., & Scott, R. C. (2005). 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): A toxicology review. Food and Chemical Toxicology, 43, 1451–1459.

    Article  CAS  PubMed  Google Scholar 

  17. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biology, 8, e1000412.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kalkan, S., Aygoren, O., Akgun, A., Gidener, S., Guven, H., & Tuncok, Y. (2004). Do adenosine receptors play a role in amitriptyline-induced cardiovascular toxicity in rats? Journal of Toxicology - Clinical Toxicology, 42, 945–954.

    Article  CAS  PubMed  Google Scholar 

  19. Cecen, E., Dost, T., Culhaci, N., Karul, A., Ergur, B., & Birincioglu, M. (2011). Protective effects of silymarin against doxorubicin-induced toxicity. Asian Pacific Journal of Cancer Prevention, 12, 2697–2704.

    CAS  PubMed  Google Scholar 

  20. Tuzun, F., Gencpinar, P., Ozbal, S., Dilek, M., Ergur, B. U., Duman, N., et al. (2012). Neuroprotective effect of neotrofin in a neonatal rat model of periventricular leukomalacia. Neuroscience Letters, 520, 6–10.

    Article  CAS  PubMed  Google Scholar 

  21. Brewster, M. E., Estes, K. S., & Bodor, N. (1990). An intravenous toxicity study of 2-hydroxypropyl-beta-cyclodextrin, a useful drug solubilizer, in rats and monkeys. International Journal of Pharmaceutics, 59, 231–243.

    Article  CAS  Google Scholar 

  22. May, C., & Stewart, P. L. (1998). Development of a toxin-binding agent as a treatment for tunicaminyluracil toxicity: protection against tunicamycin poisoning of sheep. Australian Veterinary Journal, 76, 752–756.

    Article  CAS  PubMed  Google Scholar 

  23. Verster, R. S., & Botha, C. J. (2004). Evaluation of hydroxypropyl-beta-cyclodextrin in the treatment of aldicarb poisoning in rats. Journal of the South African Veterinary Association, 75, 182–185.

    CAS  PubMed  Google Scholar 

  24. Mottram, A. R., Bryant, S. M., & Aks, S. E. (2011). Effect of cyclodextrin infusion in a rat model of verapamil toxicity. American Journal of Therapeutics, 18, 371–374.

    Article  PubMed  Google Scholar 

  25. Ozbilgin, S., Ozbilgin, M., Kucukoztas, B., Kamaci, G., Unek, T., Yurtlu, B. S., et al. (2013). Evaluation of the effectiveness of sugammadex for verapamil intoxication. Basic & Clinical Pharmacology & Toxicology, 113, 280–285.

    Article  CAS  Google Scholar 

  26. de Boer, H. D., van Egmond, J., van de Pol, F., Bom, A., & Booij, L. H. D. J. (2006). Reversal of profound rocuronium neuromuscular blockade by sugammadex in anesthetized rhesus monkeys. Anesthesiology, 104, 718–723.

    Article  PubMed  Google Scholar 

  27. Epemolu, O., Bom, A., Hope, F., & Mason, R. (2003). Reversal of neuromuscular blockade and simultaneous increase in plasma rocuronium concentration after the intravenous infusion of the novel reversal agent Org 25969. Anesthesiology, 99, 632–637.

    Article  CAS  PubMed  Google Scholar 

  28. Zwiers, A., van den Heuvel, M., Smeets, J., & Rutherford, S. (2011). Assessment of the potential for displacement interactions with sugammadex: A pharmacokinetic-pharmacodynamic modelling approach. Clinical Drug Investigation, 31, 101–111.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The results of this study were presented as a poster at the 23rd National Pharmacology Congress of Turkish Pharmacological Society.

Funding

This study was funded by Dokuz Eylul University Scientific Research Projects Coordination Unit (Grant No.: 2013.KB.SAG.022). The funder played no role in the design, conduct, or dissemination of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sule Kalkan.

Ethics declarations

Conflict of interest

B Aydin has received personal fees and travel and meeting grants from EU FP7 Project ‘European Clinical Research Infrastructure Network—Integrating Activity.’ The other authors declare no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, B., Hocaoglu, N., Micili, S.C. et al. Effects of 2-Hydroxypropyl-Beta-Cyclodextrin on Cardiovascular Signs of Amitriptyline Poisoning in a Rat Model. Cardiovasc Toxicol 16, 374–380 (2016). https://doi.org/10.1007/s12012-015-9349-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9349-4

Keywords

Navigation