Skip to main content
Log in

Interaction Between Selenium and Mercury in Biological Samples of Pakistani Myocardial Infarction Patients at Different Stages as Related to Controls

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

It has been speculated that trace elements may a play role in the pathogenesis of heart diseases. In the present study, we aimed to assess the levels of selenium (Se) and mercury (Hg) in biological samples (whole blood, urine, and scalp hair) of myocardial infarction (MI) patients of both genders (age range 45–60 years) at the first, second, and third heart attack (n = 130), hospitalized in a cardiac ward of a civil hospital of Hyderabad City (Pakistan). For comparison, healthy age-matched referent subjects (n = 61) of both genders were also selected. Se and Hg in biological samples were measured by electrothermal atomic absorption spectrometry and cold vapor atomic absorption spectrometry, prior to microwave acid digestion, respectively. The validity of the methodology was checked by biological certified reference materials. During this study, 78 % of the 32 registered patients of third MI attack (aged >50 years) died. The concentration of Se was decreased in scalp hair and blood samples of MI patients, while Hg was higher in all biological samples as compared to referent subjects. Se concentration was inversely associated with the risk of MI attacks in both genders. These results add to an increasing body of evidence that Se is a protective element for cardiovascular health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lusis AJ (2000) Atherosclerosis. Nature 407:233–41

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Oliveira NL, Ribeiro F, Alves AJ, Teixeira M, Miranda F, Oliveira J (2013) Heart rate variability in myocardial infarction patients: effects of exercise training. Rev Port Cardiol 32:687–700

    PubMed  Google Scholar 

  3. Harris ED. Copper. In: O’Dell BL, Sunde RA, editors. Handbook of nutritionally essential minerals. New York: Marcel Dekker, Inc. (1997) p. 231–73

  4. Rubbo H, O’Donnell V (2005) Nitric oxide, peroxynitrite and lipoxygenase in atherogenesis: mechanistic insights. Toxicology 208:305–17

    Article  PubMed  CAS  Google Scholar 

  5. Halliwell B (1996) Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic Res 25:57–74

    Article  PubMed  CAS  Google Scholar 

  6. Glass CK, Witztum JL (2001) Atherosclerosis: the road ahead. Cell 104:503–516

    Article  PubMed  CAS  Google Scholar 

  7. Heistad DD (2006) Oxidative stress and vascular disease 2005Duff Lecture. Arterioscler, Thromb, Vasc Biol 26:689–695

    Article  CAS  Google Scholar 

  8. Steinberg D (1999) At last, direct evidence that lipoxygenases play a role in atherogenesis. J Clin Invest 103:1487–1488

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Rossig L, Dimmeler S, Zeiher AM (2001) Apoptosis in the vascular wall and atherosclerosis. Basic Res Cardiol 96:11–22

    Article  PubMed  CAS  Google Scholar 

  10. Halliwell B, Gutteridge JMC (2006) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  11. Yoshizawa K, Rimm EB, Morris JS et al (2002) Mercury and the risk of coronary heart disease in men. N Engl J Med 347:1755–1760

    Article  PubMed  CAS  Google Scholar 

  12. Chmielnicka J, Bem EM, Kaszubski P (1983) Organ and subcellular distribution of cadmium in rats exposed to cadmium, mercury, and selenium. Environ Res 31:266–272

    Article  PubMed  CAS  Google Scholar 

  13. International Programme on Chemical Safety (IPCS) (1990) Methylmercury. Environmental Health Criteria 101. World Health Organization, Geneva

    Google Scholar 

  14. Jansson G, Harms-Ringdahl M (1993) Stimulating effects of mercuric- and silver ions on the superoxide anion production in human polymorphonuclear leukocytes. Free Radic Res Commun 18:87–98

    Article  PubMed  CAS  Google Scholar 

  15. Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34:369–403

    Article  PubMed  CAS  Google Scholar 

  16. Insug O, Datar S, Koch CJ et al (1997) Mercuric compounds inhibit human monocyte function by inducing apoptosis: evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve. Toxicology 124:211–224

    Article  PubMed  CAS  Google Scholar 

  17. Wiggers GA, Pecanha FM, Briones AM et al (2008) Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries. Am J Physiol Heart Circ Physiol 295:H1033–H1043

    Article  PubMed  CAS  Google Scholar 

  18. Kobal AB, Horvat M, Prezelj M et al (2004) The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. J Trace Elem Med Biol 17:261–274

    Article  PubMed  CAS  Google Scholar 

  19. Park ST, Lim KT, Chung YT et al (1996) Methylmercury-induced neurotoxicity in cerebral neuron culture is blocked by antioxidants and NMDA receptor antagonists. Neurotoxicology 17:37–45

    PubMed  CAS  Google Scholar 

  20. Miller DM, Lund BO, Woods JS (1991) Reactivity of Hg(II) with superoxide: evidence for the catalytic dismutation of superoxide by Hg(II). J Biochem Toxicol 6:293–298

    Article  PubMed  CAS  Google Scholar 

  21. Ganther HE, Goudie C, Sunde ML et al (1972) Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna. Science 175:1122–1124

    Article  PubMed  CAS  Google Scholar 

  22. Sumino K, Yamamoto R, Kitamura SA (1977) Role of selenium against methylmercury toxicity. Nature 268:73–74

    Article  PubMed  CAS  Google Scholar 

  23. Dlouha G, Sevcíkova S, Dokoupilova A, Zita L, Heindl J, Skrivan M (2008) Effect of dietary selenium sources on growth performance, breast muscle selenium, glutathione peroxidase activity and oxidative stability in broilers. Czech J Anim Sci 53:265–269

    CAS  Google Scholar 

  24. Patrick L (2004) Selenium biochemistry and cancer: a review of the literature. Alter Med Rev 9:239–258

    Google Scholar 

  25. Afridi HI, Kazi TG, Kazi GH et al (2006) Essential trace and toxic element distribution in the scalp hair of Pakistani myocardial infarction patients and controls. Biol Trace Elem Res 113:19–34

    Article  PubMed  CAS  Google Scholar 

  26. Polkowska Z, Kozlowska K, Namiesnik J, Przyjazny A (2004) Biological fluids as a source of information on the exposure of man to environmental chemical agents. Crit Rev Anal Chem 34(2):105–19

    Article  CAS  Google Scholar 

  27. Kazi TG, Jalbani N, Arain MB et al (2009) Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer. J Hazard Mater 163:302–7

    Article  PubMed  CAS  Google Scholar 

  28. Kazi TG, Afridi HI, Kazi N et al (2008) Distribution of zinc, copper and iron in biological samples of Pakistani myocardial infarction (1st, 2nd and 3rd heart attack) patients and controls. Clin Chim Acta 389(1–2):114–119

    Article  PubMed  CAS  Google Scholar 

  29. Afridi HI, Kazi TG, Kazi N et al (2009) Evaluation of arsenic, cobalt, copper and manganese in biological samples of steel mill workers by electrothermal atomic absorption spectrometry. Toxicol Ind Health 25:59–69

    Article  PubMed  CAS  Google Scholar 

  30. Hamilton RJ, Carter WA, Gallagher EJ (1996) Rapid improvement of acute pulmonary edema with sublingual captopril. Acad Emerg Med Mar 3:205–12

    Article  CAS  Google Scholar 

  31. Jousilahti P, Tuomilehto J, Vartiainen E, Pekkanen J, Puska P (1996) Body weight, cardiovascular risk factors, and coronary mortality: 15-year follow-up of middle-aged men and women in eastern Finland. Circulation 93:1372–1379

    Article  PubMed  CAS  Google Scholar 

  32. Shiraishi J, Kohno Y, Sawada T et al (2006) Relation of obesity to acute myocardial infarction in Japanese patients differences in gender and age. Circ J 70:1525–1530

    Article  PubMed  Google Scholar 

  33. Shiraishi J, Kohno Y, Yamaguchi S et al (2006) Medium-term prognosis of young Japanese adults having acute myocardial infarction. Circ J 70:518–524

    Article  PubMed  Google Scholar 

  34. Rana JS, Mukamal KJ, Morgan JP, Muller JE, Mittleman MA (2004) Obesity and the risk of death after acute myocardial infarction. Am Heart J 147(5):841–6

    Article  PubMed  Google Scholar 

  35. Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287:R1014–1030

    Article  PubMed  CAS  Google Scholar 

  36. Huang K, Liu H, Chen Z, Xu H (2002) Role of selenium in cytoprotection against cholesterol oxide-induced vascular damage in rats. Atherosclerosis 162:137–144

    Article  PubMed  CAS  Google Scholar 

  37. Traulsen H, Steinbrenner H, Buchczyk DP, Klotz LO, Sies H (2004) Selenoprotein P protects low-density lipoprotein against oxidation. Free Radic Res 38:123–128

    Article  PubMed  CAS  Google Scholar 

  38. Tanguy S, Boucher F, Besse S, Ducros V, Favier A, de Leiris J (1998) Trace elements and cardioprotection: increasing endogenous glutathione peroxidase activity by oral selenium supplementation in rats limits reperfusion-induced arrhythmias. J Trace Elem Med Biol 12:28–38

    Article  PubMed  CAS  Google Scholar 

  39. Tanguy S, Toufektsian MC, Besse S, Ducros V, De Leiris J, Boucher F (2003) Dietary selenium intake affects cardiac susceptibility to ischaemia/reperfusion in male senescent rats. Age Ageing 32:273–278

    Article  PubMed  Google Scholar 

  40. Tanguy S, Morel S, Berthonneche C et al (2004) Preischemic selenium status as a major determinant of myocardial infarct size in vivo in rats. Antioxid Redox Signal 6:792–796

    Article  PubMed  CAS  Google Scholar 

  41. Ayaz M, Ozdemir S, Ugur M, Vassort G, Turan B (2004) Effects of selenium on altered mechanical and electrical cardiac activities of diabetic rat. Arch Biochem Biophys 426:83–90

    Article  PubMed  CAS  Google Scholar 

  42. Ayaz M, Can B, Ozdemir S, Turan B (2002) Protective effect of selenium treatment on diabetes-induced myocardial structural alterations. Biol Trace Elem Res 89:215–226

    Article  PubMed  CAS  Google Scholar 

  43. Lu KP, Zhao SH, Wang DS (1990) The stimulatory effect of heavy metal cations on proliferation of aortic smooth muscle cells. Sci China B 33:303–310

    PubMed  CAS  Google Scholar 

  44. Gonzalvo MC, Gil F, Hernandez AF et al (1997) Inhibition of paraoxonase activity in human liver microsomes by exposure to EDTA, metals and mercurials. Chem Biol Interact 105:169–179

    Article  PubMed  CAS  Google Scholar 

  45. Boffetta P, Sallsten G, Garcia-Gomez M et al (2001) Mortality from cardiovascular diseases and exposure to inorganic mercury. Occup Environ Med 58:461–466

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Torres AD, Rai AN, Hardiek ML (2000) Mercury intoxication and arterial hypertension: report of two patients and review of the literature. Pediatrics 105:E34

    Article  PubMed  CAS  Google Scholar 

  47. Rissanen T, Voutilainen S, Nyyssonen K et al (2000) Fish oil-derived fatty acids, docosahexaenoic acid and docosapentaenoic acid, and the risk of acute coronary events: the Kuopio Ischaemic Heart Disease Risk Factor Study. Circulation 102:2677–2679

    Article  PubMed  CAS  Google Scholar 

  48. Mazerik JN, Mikkilineni H, Kuppusamy VA et al (2007) Mercury activates phospholipase a(2) and induces formation of arachidonic acid metabolites in vascular endothelial cells. Toxicol Mech Methods 17:541–557, 55

    Article  PubMed  CAS  Google Scholar 

  49. Mazerik JN, Hagele T, Sherwani S et al (2007) Phospholipase A2 activation regulates cytotoxicity of methylmercury in vascular endothelial cells. Int J Toxicol 26:553–569

    Article  PubMed  CAS  Google Scholar 

  50. Hagele TJ, Mazerik JN, Gregory A et al (2007) Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress. Int J Toxicol 26:57–69

    Article  PubMed  CAS  Google Scholar 

  51. Connor WE (2000) Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 71:171S–175S

    PubMed  CAS  Google Scholar 

  52. GISSI-Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico) (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 354:447–455

    Article  Google Scholar 

  53. Marckmann P, Gronback M (1999) Fish consumption and coronary heart disease mortality: a systemic review of prospective cohort studies. Eur J Clin Nutr 53:585–590

    Article  PubMed  CAS  Google Scholar 

  54. Wiggers GA, Pecanha FM, Briones AM et al (2008) Low mercury concentrations cause oxidative stress and endothelial dysfunction in con ductance and resistance arteries. Am J Physiol Heart Circ Physiol 295:H1033–H1043

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Higher Education Commission of Pakistan for sponsoring this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Imran Afridi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afridi, H.I., Kazi, T.G., Talpur, F.N. et al. Interaction Between Selenium and Mercury in Biological Samples of Pakistani Myocardial Infarction Patients at Different Stages as Related to Controls. Biol Trace Elem Res 158, 143–151 (2014). https://doi.org/10.1007/s12011-014-9932-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9932-8

Keywords

Navigation