Skip to main content

Advertisement

Log in

A Combination of a Dairy Product Fermented by Lactobacilli and Galactooligosaccharides Shows Additive Effects on Mineral Balances in Growing Rats with Hypochlorhydria Induced by a Proton Pump Inhibitor

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effects of a combination of a dairy product fermented by lactobacilli (DFL) and galactooligosaccharides (GOS) on mineral balances in growing rats with hypochlorhydria induced by a proton pump inhibitor (PPI). Three-week-old male rats were assigned to receive one of six diets: a control diet, control diets containing 1.6 or 5.0 % GOS, a DFL diet and DFL diets containing 1.6 or 5.0 % GOS for 9 days. From day 5 of the feeding period, half of the rats fed with control diets were subcutaneously administered with saline, whereas the remaining rats were administered with PPI for 5 days. Calcium (Ca), phosphorus (P), magnesium (Mg), iron (Fe) and zinc (Zn) balances were determined from days 6 to 9. PPI administration significantly decreased the apparent absorption of Ca and Fe and increased urinary P excretion, resulting in decreased Ca, Fe and P retention. GOS dose-dependently increased the apparent absorption of Ca, Mg and Fe and urinary Mg excretion and decreased urinary P excretion. DFL significantly increased the apparent absorption of Ca and Mg and urinary Mg excretion. The combination of DFL and GOS additively affected these parameters, resulting in increased Ca, P and Fe retention, and it further increased the apparent absorption and retention of Zn at 5.0 % GOS. In conclusion, the combination of DFL and GOS improves Ca, P and Fe retention in an additive manner and increases the Zn retention in growing rats with hypochlorhydria induced by PPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takasugi S, Ashida K, Maruyama S, Komaba Y, Kaneko T, Yamaji T (2011) A dairy product fermented by lactobacilli cancels the adverse effects of hypochlorhydria induced by a proton pump inhibitor on bone metabolism in growing rats. Br J Nutr 106:1487–1494

    Article  PubMed  CAS  Google Scholar 

  2. Sturniolo GC, Montino MC, Rossetto L, Martin A, D’Inca R, D’Odorico A, Naccarato R (1991) Inhibition of gastric acid secretion reduces zinc absorption in man. J Am Coll Nutr 10:372–375

    PubMed  CAS  Google Scholar 

  3. Hutchinson C, Geissler CA, Powell JJ, Bomford A (2007) Proton pump inhibitors suppress absorption of dietary non-haem iron in hereditary haemochromatosis. Gut 56:1291–1295

    Article  PubMed  CAS  Google Scholar 

  4. Kim Y, Carpenter CE, Mahoney AW (1993) Gastric acid production, iron status and dietary phytate alter enhancement by meat of iron absorption in rats. J Nutr 123:940–946

    PubMed  CAS  Google Scholar 

  5. Miret S, Simpson RJ, McKie AT (2003) Physiology and molecular biology of dietary iron absorption. Annu Rev Nutr 23:283–301

    Article  PubMed  CAS  Google Scholar 

  6. Chonan O, Watanuki M (1995) Effect of galactooligosaccharides on calcium absorption in rats. J Nutr Sci Vitaminol (Tokyo) 41:95–104

    Article  CAS  Google Scholar 

  7. Chonan O, Watanuki M (1996) The effect of 6′-galactooligosaccharides on bone mineralization of rats adapted to different levels of dietary calcium. Int J Vitam Nutr Res 66:244–249

    PubMed  CAS  Google Scholar 

  8. van den Heuvel EG, Schoterman MH, Muijs T (2000) Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr 130:2938–2942

    PubMed  Google Scholar 

  9. Chonan O, Takahashi R, Watanuki M (2001) Role of activity of gastrointestinal microflora in absorption of calcium and magnesium in rats fed beta1-4 linked galactooligosaccharides. Biosci Biotechnol Biochem 65:1872–1875

    Article  PubMed  CAS  Google Scholar 

  10. Donnelly E (2011) Methods for assessing bone quality: a review. Clin Orthop Relat Res 469:2128–2138

    Article  PubMed  Google Scholar 

  11. Recker RR (1985) Calcium absorption and achlorhydria. N Engl J Med 313:70–73

    Article  PubMed  CAS  Google Scholar 

  12. Champagne ET (1989) Low gastric hydrochloric acid secretion and mineral bioavailability. Adv Exp Med Biol 249:173–184

    Article  PubMed  CAS  Google Scholar 

  13. Pohl D, Fox M, Fried M, Göke B, Prinz C, Mönnikes H, Rogler G, Dauer M, Keller J, Lippl F, Schiefke I, Seidler U, Allescher HD, Kandahar Study Group (2008) Do we need gastric acid? Digestion 77:184–197

    Article  PubMed  CAS  Google Scholar 

  14. Medeiros DM, Stoecker B, Plattner A, Jennings D, Haub M (2004) Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J Nutr 134:3061–3067

    PubMed  CAS  Google Scholar 

  15. Bergqvist SW, Andlid T, Sandberg AS (2006) Lactic acid fermentation stimulated iron absorption by Caco-2 cells is associated with increased soluble iron content in carrot juice. Br J Nutr 96:705–711

    PubMed  CAS  Google Scholar 

  16. Walker AF, Marakis G, Christie S, Byng M (2003) Mg citrate found more bioavailable than other Mg preparations in a randomised, double-blind study. Magnes Res 16:183–191

    PubMed  CAS  Google Scholar 

  17. Gaucheron F (2005) The minerals of milk. Reprod Nutr Dev 45:473–483

    Article  PubMed  CAS  Google Scholar 

  18. Straub DA (2007) Calcium supplementation in clinical practice: a review of forms, doses, and indications. Nutr Clin Pract 22:286–296

    Article  PubMed  Google Scholar 

  19. Lindberg JS, Zobitz MM, Poindexter JR, Pak CY (1990) Magnesium bioavailability from magnesium citrate and magnesium oxide. J Am Coll Nutr 9:48–55

    PubMed  CAS  Google Scholar 

  20. Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, McCabe LD, McCabe GP, Duignan S, Schoterman MH, van den Heuvel EG (2011) Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem 59:6501–6510

    Article  PubMed  CAS  Google Scholar 

  21. Delzenne N, Aertssens J, Verplaetse H, Roccaro M, Roberfroid M (1995) Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci 57:1579–1587

    Article  PubMed  CAS  Google Scholar 

  22. Miyada T, Nakajima A, Ebihara K (2012) Degradation of pectin in the caecum contributes to bioavailability of iron in rats. Br J Nutr 107:1452–1457

    Article  PubMed  CAS  Google Scholar 

  23. Coudray C, Feillet-Coudray C, Tressol JC, Gueux E, Thien S, Jaffrelo L, Mazur A, Rayssiguier Y (2005) Stimulatory effect of inulin on intestinal absorption of calcium and magnesium in rats is modulated by dietary calcium intakes short- and long-term balance studies. Eur J Nutr 44:293–302

    Article  PubMed  CAS  Google Scholar 

  24. Miyazato S, Nakagawa C, Kishimoto Y, Tagami H, Hara H (2010) Promotive effects of resistant maltodextrin on apparent absorption of calcium, magnesium, iron and zinc in rats. Eur J Nutr 49:165–171

    Article  PubMed  CAS  Google Scholar 

  25. Tahiri M, Tressol JC, Arnaud J, Bornet FR, Bouteloup-Demange C, Feillet-Coudray C, Brandolini M, Ducros V, Pépin D, Brouns F, Roussel AM, Rayssiguier Y, Coudray C (2003) Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women: a stable-isotope study. Am J Clin Nutr 77:449–457

    PubMed  CAS  Google Scholar 

  26. Demigné C, Levrat MA, Younes H, Rémésy C (1995) Interactions between large intestine fermentation and dietary calcium. Eur J Clin Nutr 49:S235–S238

    PubMed  Google Scholar 

  27. Rémésy C, Behr SR, Levrat MA, Demigné C (1992) Fiber fermentation in the cecum and its physiological consequences. Nutr Res 12:1235–1244

    Article  Google Scholar 

  28. Trinidad TP, Wolever TM, Thompson LU (1999) Effects of calcium concentration, acetate, and propionate on calcium absorption in the human distal colon. Nutrition 15:529–533

    Article  PubMed  CAS  Google Scholar 

  29. Tahiri M, Tressol JC, Arnaud J, Bornet F, Bouteloup-Demange C, Feillet-Coudray C, Ducros V, Pépin D, Brouns F, Rayssiguier AM, Coudray C (2001) Five-week intake of short-chain fructo-oligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. J Bone Miner Res 16:2152–2160

    Article  PubMed  CAS  Google Scholar 

  30. Amizuka N, Li M, Kobayashi M, Hara K, Akahane S, Takeuchi K, Freitas PH, Ozawa H, Maeda T, Akiyama Y (2008) Vitamin K2, a gamma-carboxylating factor of gla-proteins, normalizes the bone crystal nucleation impaired by Mg-insufficiency. Histol Histopathol 23:1353–1366

    PubMed  CAS  Google Scholar 

  31. Marteau P, Flourié B (2001) Tolerance to low-digestible carbohydrates: symptomatology and methods. Br J Nutr 85:S17–S21

    Article  PubMed  CAS  Google Scholar 

  32. Lappalainen R, Knuuttila M, Lammi S, Alhava EM (1983) Fluoride content related to the elemental composition, mineral density and strength of bone in healthy and chronically diseased persons. J Chronic Dis 36:707–713

    Article  PubMed  CAS  Google Scholar 

  33. Yamaguchi M (2010) Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 338:241–254

    Article  PubMed  CAS  Google Scholar 

  34. King JC, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. J Nutr 130:1360S–1366S

    PubMed  CAS  Google Scholar 

  35. Momcilovic B, Belonge B, Giroux A, Shah BG (1975) Total femur zinc as parameter of choice for a zinc bioassay in rats. Nutr Rep Int 12:197–203

    CAS  Google Scholar 

  36. Meneely R, Ghishan FK (1982) In vivo intestinal zinc transport in rats: normal and growth retarded. J Pediatr Gastroenterol Nutr 1:119–124

    Article  PubMed  CAS  Google Scholar 

  37. Seal CJ, Mathers JC (1989) Intestinal zinc transfer by everted gut sacs from rats given diets containing different amounts and types of dietary fibre. Br J Nutr 62:151–163

    Article  PubMed  CAS  Google Scholar 

  38. Lowe NM, Fekete K, Decsi T (2009) Methods of assessment of zinc status in humans: a systematic review. Am J Clin Nutr 89:2040S–2051S

    Article  PubMed  CAS  Google Scholar 

  39. Hambidge M (2003) Biomarkers of trace mineral intake and status. J Nutr 133:948S–955S

    PubMed  CAS  Google Scholar 

  40. dos Santos EF, Tsuboi KH, Araújo MR, Andreollo NA, Miyasaka CK (2011) Dietary galactooligosaccharides increase calcium absorption in normal and gastrectomized rats. Rev Col Bras Cir 38:186–191

    Article  PubMed  Google Scholar 

  41. Rosado JL, Díaz M, González K, Griffin I, Abrams SA, Preciado R (2005) The addition of milk or yogurt to a plant-based diet increases zinc bioavailability but does not affect iron bioavailability in women. J Nutr 135:465–468

    PubMed  CAS  Google Scholar 

  42. Narva M, Nevala R, Poussa T, Korpela R (2004) The effect of Lactobacillus helveticus fermented milk on acute changes in calcium metabolism in postmenopausal women. Eur J Nutr 43:61–68

    Article  PubMed  CAS  Google Scholar 

  43. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Conflicts of Interest

We have no conflicts of interest other than that we are employees of Meiji Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Takasugi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takasugi, S., Ashida, K., Maruyama, S. et al. A Combination of a Dairy Product Fermented by Lactobacilli and Galactooligosaccharides Shows Additive Effects on Mineral Balances in Growing Rats with Hypochlorhydria Induced by a Proton Pump Inhibitor. Biol Trace Elem Res 153, 309–318 (2013). https://doi.org/10.1007/s12011-013-9681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9681-0

Keywords

Navigation