Skip to main content
Log in

Hemoglobin Regeneration Efficiency in Anemic Rats: Effects on Bone Mineral Composition and Biomechanical Properties

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study reports the effects of dietary iron (Fe) deficiency and recovery on bone mineral composition and strength in anemic rats submitted to a hemoglobin (Hb) repletion assay. Weanling male Wistar rats were fed a low-Fe diet (12 mg/kg) for 15 days followed by 2 weeks of Fe repletion with diets providing 35 mg Fe/kg as either ferrous sulfate (n = 8) or ferric pyrophosphate (FP; n = 12). At final day of each period (depletion and repletion), Fe-adequate animals were also euthanized. Iron status (blood Hb, Hb Fe pool, Hb regeneration efficiency), tibia mineral concentrations (Ca, Mg, Fe, Cu, and Zn) and biomechanical properties were evaluated. Iron-deficient rats had lower tibia Fe and Mg levels and bone strength when compared to controls. Yield load and resilience were positively related to tibia Mg levels (r = 0.47, P = 0.02 and r = 0.56, P = 0.004, respectively). Iron repletion did not recover tibia Mg concentrations impaired by Fe deficiency. Moreover, bone elastic properties were negatively affected by FP consumption. In conclusion, bone mineral composition and strength were affected by Fe deficiency, whereas dietary Fe source influenced tibia Mg and resistance in the period during which rats were recovering from anemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

FS:

Ferrous sulfate

FP:

Ferric pyrophosphate

HRE:

Hemoglobin regeneration efficiency

References

  1. Nieves JW (2005) Osteoporosis: the role of micronutrients. Am J Clin Nutr 81:1232S–1239S

    PubMed  CAS  Google Scholar 

  2. Medeiros DM, Plattner A, Jennings D et al (2002) Bone morphology, strength and density are compromised in iron-deficient rats and exacerbated by calcium restriction. J Nutr 132:3135–3141

    PubMed  CAS  Google Scholar 

  3. Medeiros DM, Stoecker B, Plattner A et al (2004) Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J Nutr 134:3061–3067

    PubMed  CAS  Google Scholar 

  4. Katsumata S-I, Katsumata-Tsuboi R, Uehara M, Suzuki K (2009) Severe iron deficiency decreases both bone formation and bone resorption in rats. J Nutr 139:1–6

    Google Scholar 

  5. Tuderman L, Myllyla R, Kivirikko KI (1977) Mechanism of the prolyl hydroxylase reaction. 1. Role of co-substrates. Eur J Biochem 80:341–348

    Article  PubMed  CAS  Google Scholar 

  6. DeLuca HF (1976) Metabolism of vitamin D: current status. Am J Clin Nutr 29:1258–1270

    PubMed  CAS  Google Scholar 

  7. Hoenderop JGJ, Nilius B, Bindels RJM (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422

    Article  PubMed  CAS  Google Scholar 

  8. Vaz RTC, Lobo AR, Cocato ML et al (2010) Effects of inulin-type fructans consumption on mineral intestinal absorption and balance in rats fed control and iron-deficient diets. Braz J Food Nutr 21:5–11

    Google Scholar 

  9. Lobo AR, Cocato ML, Jorgetti V et al (2009) Changes in bone mass, biomechanical properties, and microarchitecture of calcium- and iron-deficient rats fed diets supplemented with inulin-type fructans. Nutr Res 29:873–881

    Article  PubMed  CAS  Google Scholar 

  10. Association of Official Analytical Chemists (2006) Official methods of analysis of Association of Official Analytical Chemists, 18th edn. AOAC International, Maryland, pp 80–81, Current through Revision 1, chapter 45

    Google Scholar 

  11. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    PubMed  CAS  Google Scholar 

  12. Cocato ML, Ré MI, Trindade Neto MA et al (2007) Avaliação por métodos in vitro e in vivo da biodisponibilidade de sulfato ferroso microencapsulado. Braz J Nutr 20:239–247

    CAS  Google Scholar 

  13. Sedlin ED, Hirsch C (1966) Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop Scand 37:29–48

    Article  PubMed  CAS  Google Scholar 

  14. Drabkin DL, Austin JH (1935) Spectrophotometric studies II. Preparations from washed blood cells: nitric oxide hemoglobin and sulphemoglobin. J Biol Chem 112:51–65

    CAS  Google Scholar 

  15. Mahoney AW, Van Orden CC, Hendricks DG (1974) Efficiency of converting food iron into haemoglobin by the anemic rat. Nutr Metab 17:223–230

    Article  PubMed  CAS  Google Scholar 

  16. Fritz JC, Pla GW, Harrison BN et al (1974) Collaborative study of the rat hemoglobin repletion test for biovailability of iron. J AOAC Int 57:513–517

    CAS  Google Scholar 

  17. Forbes AL, Adams CE, Arnaud MJ et al (1989) Comparison of in vitro, animal, and clinical determinations of iron bioavailability: International Nutritional Anemia Consultative Group Task Force report on iron bioavailability. Am J Clin Nutr 49:225–238

    PubMed  CAS  Google Scholar 

  18. Wienk KJH, Marx JJM, Beynen AC (1999) The concept of iron bioavailabilty and its assessment. Eur J Nutr 38:51–75

    Article  PubMed  CAS  Google Scholar 

  19. Fritz JC, Pla GW, Harrison BN et al (1978) Measurement of the bioavailability of iron, using the rat hemoglobin repletion test. J AOAC Int 61:709–714

    CAS  Google Scholar 

  20. Hurrel RF (2002) How to ensure adequate iron absorption from iron-fortified food. Nutr Rev 60:S7–S15

    Article  Google Scholar 

  21. Heaton FW, Tongyai S, Motta C et al (1987) Changes in the erythrocyte membrane during magnesium deficiency. Nutr Res 7:655–663

    Article  CAS  Google Scholar 

  22. De Franceschi L, Brugnara C, Beuzard Y (1997) Dietary magnesium supplementation ameliorates anemia in a mouse model of β-thalassemia. Blood 90:1283–1290

    PubMed  Google Scholar 

  23. Shimano MM, Shimano AC, Volpon JB (2002) Histerese de fêmures de ratas submetidos a ensaio de flexão, em diferentes faixas etárias. Rev Bras Eng Biomed 18:88–97

    Google Scholar 

  24. Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22:181–187

    Article  PubMed  CAS  Google Scholar 

  25. Burr DB (2002) The contribution of the organic matrix to bone’s material properties. Bone 31:8–11

    Article  PubMed  CAS  Google Scholar 

  26. Kobayashi M, Hara K, Akyiama Y (2004) Effects of vitamin K2 (menatetrenone) and alendronate on bone mineral density and bone strength in rats fed a low-magnesium diet. Bone 35:1136–1143

    Article  PubMed  CAS  Google Scholar 

  27. Amizuka N, Li M, Kobayashi M et al (2008) Vitamin k2, a γ-carboxylating factor of gla-proteins, normalizes the bone crystal nucleation impaired by Mg-insufficiency. Histol Histopathol 23:1353–1366

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. José Alfredo Gomes Arêas and Dr. Luiz Antonio Gioielli for their collaboration in the bone biomechanical assays; Ms. Tatiana Garofalo Quintal and Maura Sayuri de Andrade for technical assistance; Fundação de Amparo à Pesquisa do Estado de São Paulo (research project 2006/01735-0) for supporting the research; and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the fellowships awarded to Alexandre R. Lobo. This study was also supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). We also thank Álvaro Augusto Feitosa Pereira for reviewing the manuscript.

Conflicts of Interest

There are no financial, professional, or personal conflicts of interests for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia Colli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobo, A.R., Gaievski, E.H.S. & Colli, C. Hemoglobin Regeneration Efficiency in Anemic Rats: Effects on Bone Mineral Composition and Biomechanical Properties. Biol Trace Elem Res 143, 403–411 (2011). https://doi.org/10.1007/s12011-010-8871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8871-2

Keywords

Navigation