Skip to main content
Log in

Apoptin as a Potential Viral Gene Oncotherapeutic Agent

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The use of viruses for treatment of cancer overcomes the bottlenecks of chemotherapy and radiotherapy. Several viruses and their proteins have been evaluated for oncolytic effect. The VP3 protein (apoptin) of chicken anemia virus is one such protein with an inherent ability to lyse cancer and transformed cells while leaving normal cells unharmed. In the present study, the apoptosis inducing potential of VP3 protein of CAV was evaluated in human cervical cancer cell line (HeLa). It was found that in VP3-induced apoptosis, caspase-dependent intrinsic pathway plays an important role with the cleavage of poly (ADP-ribose) polymerase (PARP) and there was no evidence of involvement of death receptor-mediated extrinsic pathway. The results of this study provide intuitive information and strengthen the candidacy of apoptin as a viral oncotherapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fearnhead, H. O., Rodriguez, J., Govek, E. E., Guo, W., Kobayashi, R., Hannon, G., & Lazebnik, Y. A. (1998). Oncogene-dependent apoptosis is mediated by caspase-9. Proceedings of the National Academy of Sciences of the United States of America, 95, 13664–13669.

    Article  CAS  Google Scholar 

  2. Ghavami, S., Hashemi, M., Ande, S. R., Yeganeh, B., Xiao, W., Eshraghi, M., Bus, C. J., Kadkhoda, K., Wiechec, E., Halayko, A. J., & Los, M. (2009). Apoptosis and cancer: mutations within caspase genes. Journal of Medical Genetics, 46, 497–510.

    Article  CAS  Google Scholar 

  3. Berger, N. A., & Petzold, S. J. (1985). Identification of minimal size requirements of DNA for activation of poly(ADP-ribose) polymerase. Biochemistry, 24, 4352–4355.

    Article  CAS  Google Scholar 

  4. Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26, 239–257.

    Article  CAS  Google Scholar 

  5. Cohen, G. M. (1997). Caspases: the executioners of apoptosis. Biochemical Journal, 326, 1–16.

    CAS  Google Scholar 

  6. Duan, H., Chinnaiyan, A. M., Hudson, P. L., Wing, J. P., He, W. W., & Dixit, V. M. (1996). ICE-LAP3, a novel mammalian homologue of the Caenorhabditis elegans cell death protein Ced-3 is activated during Fas- and tumor necrosis factor-induced apoptosis. Journal of Biological Chemistry, 271, 1621–1625.

    Article  CAS  Google Scholar 

  7. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., & Poirier, G. G. (1993). Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Research, 53, 3976–3985.

    CAS  Google Scholar 

  8. Soussi, T., Dehouche, K., & Beroud, C. (2000). p53 website and analysis of p53 gene mutations in human cancer: forging a link between epidemiology and carcinogenesis. Human Mutation, 15, 105–113.

    Article  CAS  Google Scholar 

  9. Hernandez, I., Maddison, L. A., Wei, Y., DeMayo, F., Petras, T., Li, B., Gingrich, J. R., Rosen, J. M., & Greenberg, N. M. (2003). Prostate-specific expression of p53 (R172L) differentially regulates p21, Bax, and mdm2 to inhibit prostate cancer progression and prolong survival. Molecular Cancer Research, 1, 1036–1047.

    CAS  Google Scholar 

  10. Guo, Z. S., Thorne, S. H., & Bartlett, D. L. (2008). Oncolytic virotherapy: molecular targets in tumor selective replication and carrier cell mediated delivery of oncolytic viruses. Biochimica et Biophysica Acta, 1785, 217–231.

    CAS  Google Scholar 

  11. Noteborn, M.H., Todd, D., Verschueren, C.A., de Gauw, H.W., Curran, W.L., Veldkamp, S., Douglas, A.J., McNulty, M.S., van der, E.A., & Koch, G., (1994). A single chicken anemia virus protein induces apoptosis. J Virol, 68, 346-351.

  12. Danen-Van Oorschot, A. A., Zhang, Y. H., Leliveld, S. R., Rohn, J. L., Seelen, M. C., Bolk, M. W., Van Zon, A., Erkeland, S. J., Abrahams, J. P., Mumberg, D., & Noteborn, M. H. (2003). Importance of nuclear localization of apoptin for tumor-specific induction of apoptosis. Journal of Biological Chemistry, 278, 27729–27736.

    Article  CAS  Google Scholar 

  13. Zhuang, S. M., Shvarts, A., van Ormondt, H., Jochemsen, A. G., van der Eb, A. J., & Noteborn, M. H. (1995). Apoptin, a protein derived from chicken anemia virus, induces p53-independent apoptosis in human osteosarcoma cells. Cancer Research, 55, 486–489.

    CAS  Google Scholar 

  14. Olijslagers, S. J., Zhang, Y. H., Backendorf, C., & Noteborn, M. H. (2007). Basic and Clinical Pharmacology and Toxicology, 100, 127–131.

    Google Scholar 

  15. Roulston, A., Marcellus, R. C., & Branton, P. E. (1999). Additive cytotoxic effect of apoptin and chemotherapeutic agents paclitaxel and etoposide on human tumour cells. Annual Review of Microbiology, 53, 577–628.

    Article  CAS  Google Scholar 

  16. Singh, P. K. (2010). Elucidation of molecular mechanism of apoptosis involved in apoptin induced oncolysis in tumor cell line. Uttar Pradesh: Indian Veterinary Research Institute (Deemed University) Izatnagar.

    Google Scholar 

  17. Saxena, S., Kumar, R., Singh, P., Chaturvedi, U., Saxena, L., Kumar, R., Sahoo, A. P., Doley, J., Rajmani, Kumar, A., Kumar, S., & Tiwari, A. K. (2012). Prokaryotic expression of chicken infectious anemia apoptin protein and characterization of its polyclonal antibodies. Indian Journal of Experimental Biology, 50, 325–331.

    CAS  Google Scholar 

  18. Herrmann, M., Lorenz, H. M., Voll, R., Grunke, M., Woith, W., & Kalden, J. R. (1994). A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Research, 22, 5506–5507.

    Article  CAS  Google Scholar 

  19. Hughes, D., & Mehmet, H. (2003). Cell proliferation and apoptosis. Advanced methods. Oxford: Bios Scientific Publishers Limited.

    Google Scholar 

  20. Vermes, I., Haanen, C., Steffens-Nakken, H., & Reutelingsperger, C. (1995). A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. Journal of Immunological Methods, 184, 39–51.

    Article  CAS  Google Scholar 

  21. Doley, J., Singh, L. V., Kumar, G. R., Sahoo, A. P., Saxena, L., Chaturvedi, U., Saxena, S., Kumar, R., Singh, P. K., Rajmani, R. S., Santra, L., Palia, S. K., Tiwari, S., Harish, D. R., Kumar, A., Desai, G. S., Gupta, S., Gupta, S. K., & Tiwari, A. K. (2014). Canine parvovirus type 2a (CPV-2a)-induced apoptosis in MDCK involves both extrinsic and intrinsic pathways. Applied Biochemistry and Biotechnology, 172, 497–508.

    Article  CAS  Google Scholar 

  22. Kumar, R., Tiwari, A. K., Chaturvedi, U., Kumar, G. R., Sahoo, A. P., Rajmani, R. S., Saxena, L., Saxena, S., Tiwari, S., & Kumar, S. (2012). Velogenic newcastle disease virus as an oncolytic virotherapeutics: in vitro characterization. Applied Biochemistry and Biotechnology, 167, 2005–2022.

    Article  CAS  Google Scholar 

  23. Saxena, L., Kumar, G. R., Saxena, S., Chaturvedi, U., Sahoo, A. P., Singh, L. V., Santra, L., Palia, S. K., Desai, G. S., & Tiwari, A. K. (2013). Apoptosis induced by NS1 gene of Canine Parvovirus-2 is caspase dependent and p53 independent. Virus Research, 173, 426–430.

    Article  CAS  Google Scholar 

  24. Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3, 1101–1108.

    Article  CAS  Google Scholar 

  25. Singh, L. V., Saxena, S., Gupta, S., Gupta, S. K., Ravi Kumar, G., Desai, G. S., Sahoo, A. P., & Tiwari, A. K. (2014). Evaluation and comparison of the constitutive expression levels of Toll-like receptors 2, 3 and 7 in the peripheral blood mononuclear cells of Tharparkar and crossbred cattle. Veterinary World, 7, 209–212.

    Article  Google Scholar 

  26. Ravindra, P. V., Tiwari, A. K., Sharma, B., Rajawat, Y. S., Ratta, B., Palia, S., Sundaresan, N. R., Chaturvedi, U., Kumar, G. B., Chindera, K., Saxena, M., Subudhi, P. K., Rai, A., & Chauhan, R. S. (2008). Newcastle disease virus-induced cytopathic effect in infected cells is caused by apoptosis. Archives of Virology, 153, 749–754.

    Article  CAS  Google Scholar 

  27. McNulty, M. S. (1991). Chicken anaemia agent: a review. Avian Pathology, 20, 187–203.

    Article  CAS  Google Scholar 

  28. Danen-van Oorschot, A. A., van Der Eb, A. J., & Noteborn, M. H. (2000). The Chicken Anemia Virus-Derived Protein Apoptin Requires Activation of Caspases for Induction of Apoptosis in Human Tumor Cells. Journal of Virology, 74, 7072–7078.

    Article  CAS  Google Scholar 

  29. Chen, K., Luo, Z., Tang, J., & Zheng, S. J. (2011). A critical role of heat shock cognate protein 70 in Apoptin-induced phosphorylation of Akt. Biochemical and Biophysical Research Communications, 409, 200–204.

    Article  CAS  Google Scholar 

  30. Ravindra, P. V., Tiwari, A. K., Ratta, B., Chaturvedi, U., Palia, S. K., & Chauhan, R. S. (2009). Newcastle disease virus-induced cytopathic effect in infected cells is caused by apoptosis. Virus Research, 141, 13–20.

    Article  CAS  Google Scholar 

  31. Nagaleekar, V. K., Tiwari, A. K., Kataria, R. S., Bais, M. V., Ravindra, P. V., & Kumar, S. (2007). Bluetongue virus induces apoptosis in cultured mammalian cells by both caspase-dependent extrinsic and intrinsic apoptotic pathways. Archives of Virology, 152, 1751–1756.

    Article  CAS  Google Scholar 

  32. Appelt, D. M., Roupas, M. R., Way, D. S., Bell, M. G., Albert, E. V., Hammond, C. J., & Balin, B. J. (2008). Inhibition of apoptosis in neuronal cells infected with Chlamydophila (Chlamydia) pneumoniae. BMC Neuroscience, 9, 13–20.

    Article  Google Scholar 

  33. Ravindra, P. V., Tiwari, A. K., Ratta, B., Chaturvedi, U., Palia, S. K., Subudhi, P. K., Kumar, R., Sharma, B., Rai, A., & Chauhan, R. S. (2008). Induction of apoptosis in Vero cells by Newcastle disease virus requires viral replication, de-novo protein synthesis and caspase activation. Virus Research, 133, 285–290.

    Article  CAS  Google Scholar 

  34. Henson, P. M., Bratton, D. L., & Fadok, V. A. (2001). The phosphotidylserine: a crucial molecular switch. Nature Reviews Molecular Cell Biology, 2, 627–633.

    Article  CAS  Google Scholar 

  35. Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., & Henson, P. M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. Journal of Immunology, 148, 2207–2216.

    CAS  Google Scholar 

  36. Zamzami, N., Marchetti, P., Castedo, M., Zanin, C., Vayssiere, J. L., Petit, P. X., & Kroemer, G. (1995). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. Journal of Experimental Medicine, 181, 1661–1672.

    Article  CAS  Google Scholar 

  37. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., & Yuan, J. (2000). An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. Nature, 403, 98–103.

    Article  CAS  Google Scholar 

  38. Hitomi, J., Katayama, T., Eguchi, Y., Kudo, T., Taniguchi, M., Koyama, Y., Manabe, T., Yamagishi, S., Bando, Y., Imaizumi, K., Tsujimoto, Y., & Tohyama, M. (2004). Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. Journal of Cell Biology, 165, 347–356.

    Article  CAS  Google Scholar 

  39. Boulares, A. H., Yakovlev, A. G., Ivanova, V., Stoica, B. A., Wang, G., Iyer, S., & Smulson, M. (1999). Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. Journal of Biological Chemistry, 274, 22932–22940.

    Article  CAS  Google Scholar 

  40. Drew, Y., & Plummer, R. (2009). PARP inhibitors in cancer therapy: two modes of attack on the cancer cell widening the clinical applications. Drug Resistance Updates, 12, 153–156.

    Article  CAS  Google Scholar 

  41. Soung, Y. H., Lee, J. W., Kim, S. Y., Jang, J., Park, Y. G., Park, W. S., Nam, S. W., Lee, J. Y., Yoo, N. J., & Lee, S. H. (2005). Caspase-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Research, 65, 815–821.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank National Agricultural Innovation Project (NAIP) (project code: NAIP/COMP-4/C4/C-3001/2008-09) for providing funds to conduct the study. We also thank the Director, Indian Veterinary Research Institute, for providing necessary facilities to carry out this work.

Ethical Statement

This manuscript completely complies with the ethical rules applicable for this journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Tiwari, A.K., Rajmani, R.S. et al. Apoptin as a Potential Viral Gene Oncotherapeutic Agent. Appl Biochem Biotechnol 176, 196–212 (2015). https://doi.org/10.1007/s12010-015-1567-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1567-5

Keywords

Navigation