Skip to main content

Advertisement

Log in

Aldosterone Production and Signaling Dysregulation in Obesity

  • Hypertension and Obesity (E Reisin, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

In the past decades, we have extended the view of aldosterone effects beyond epithelial tissues. New evidence regarding the aldosterone/mineralocorticoid receptor (MR) pathway in active metabolic tissues, including adipose tissue, has confirmed its pathogenic role in systemic inflammation, endothelial dysfunction, insulin resistance, and dyslipidemia. Obesity, a current epidemic worldwide, increases aldosterone production by several adipocyte factors such as leptin but is also associated with local aldosterone production. In addition, obesity can modulate MR activation leading to signaling dysregulation and a pro-inflammatory profile of adipocytes. Current knowledge have deciphered that this phenotypical differences of obesity may be explained, at least in part, by novel non-genomic activation of MR, new inducers of aldosterone synthesis, and probably by several epigenetic modifications. In addition, with the understanding of the complex interplay of obesity, hormones, and receptors, targeted pharmacological therapy is expected and is currently under active research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104(4):545–56.

    Article  CAS  PubMed  Google Scholar 

  2. Spat A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev. 2004;84(2):489–539. doi:10.1152/physrev.00030.2003.

    Article  CAS  PubMed  Google Scholar 

  3. Gomez-Sanchez E, Gomez-Sanchez CE. The multifaceted mineralocorticoid receptor. Compr Physiol. 2014;4(3):965–94. doi:10.1002/cphy.c130044.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Muller-Fielitz H, Lau M, Johren O, Stellmacher F, Schwaninger M, Raasch W. Blood pressure response to angiotensin II is enhanced in obese Zucker rats and is attributed to an aldosterone-dependent mechanism. Br J Pharmacol. 2012;166(8):2417–29. doi:10.1111/j.1476-5381.2012.01953.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tomaschitz A, Pilz S, Ritz E, Obermayer-Pietsch B, Pieber TR. Aldosterone and arterial hypertension. Nat Rev Endocrinol. 2010;6(2):83–93. doi:10.1038/nrendo.2009.263.

    Article  CAS  PubMed  Google Scholar 

  6. Marver D, Kokko JP. Renal target sites and the mechanism of action of aldosterone. Miner Electrolyte Metab. 1983;9(1):1–18.

    CAS  PubMed  Google Scholar 

  7. Jaffe IZ, Mendelsohn ME. Angiotensin II and aldosterone regulate gene transcription via functional mineralocorticoid receptors in human coronary artery smooth muscle cells. Circ Res. 2005;96(6):643–50. doi:10.1161/01.RES.0000159937.05502.d1.

    Article  CAS  PubMed  Google Scholar 

  8. NRN Committee. A unified nomenclature system for the nuclear receptor superfamily. Cell. 1999;97:161–3.

    Article  Google Scholar 

  9. Fuller PJ, Young MJ. Mechanisms of mineralocorticoid action. Hypertension. 2005;46(6):1227–35. doi:10.1161/01.HYP.0000193502.77417.17.

    Article  CAS  PubMed  Google Scholar 

  10. Naray-Fejes-Toth A, Fejes-Toth G. The sgk, an aldosterone-induced gene in mineralocorticoid target cells, regulates the epithelial sodium channel. Kidney Int. 2000;57(4):1290–4. doi:10.1046/j.1523-1755.2000.00964.x.

    Article  CAS  PubMed  Google Scholar 

  11. Lombes M, Alfaidy N, Eugene E, Lessana A, Farman N, Bonvalet JP. Prerequisite for cardiac aldosterone action. Mineralocorticoid receptor and 11 beta-hydroxysteroid dehydrogenase in the human heart. Circulation. 1995;92(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  12. Takeda Y, Miyamori I, Inaba S, Furukawa K, Hatakeyama H, Yoneda T, et al. Vascular aldosterone in genetically hypertensive rats. Hypertension. 1997;29(1 Pt 1):45–8.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou MY, Gomez-Sanchez CE, Gomez-Sanchez EP. An alternatively spliced rat mineralocorticoid receptor mRNA causing truncation of the steroid binding domain. Mol Cell Endocrinol. 2000;159(1–2):125–31.

    Article  CAS  PubMed  Google Scholar 

  14. Rickard AJ, Morgan J, Tesch G, Funder JW, Fuller PJ, Young MJ. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension. 2009;54(3):537–43. doi:10.1161/HYPERTENSIONAHA.109.131110.

    Article  CAS  PubMed  Google Scholar 

  15. Rickard AJ, Young MJ. Corticosteroid receptors, macrophages and cardiovascular disease. J Mol Endocrinol. 2009;42(6):449–59. doi:10.1677/JME-08-0144.

    Article  CAS  PubMed  Google Scholar 

  16. Carvajal CA, Herrada AA, Castillo CR, Contreras FJ, Stehr CB, Mosso LM, et al. Primary aldosteronism can alter peripheral levels of transforming growth factor beta and tumor necrosis factor alpha. J Endocrinol Investig. 2009;32(9):759–65. doi:10.3275/6429.

    Article  CAS  Google Scholar 

  17. Herrada AA, Contreras FJ, Marini NP, Amador CA, Gonzalez PA, Cortes CM, et al. Aldosterone promotes autoimmune damage by enhancing Th17-mediated immunity. J Immunol. 2010;184(1):191–202. doi:10.4049/jimmunol.0802886.

    Article  CAS  PubMed  Google Scholar 

  18. Calhoun DA, Sharma K. The role of aldosteronism in causing obesity-related cardiovascular risk. Cardiol Clin. 2010;28(3):517–27. doi:10.1016/j.ccl.2010.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pimenta E, Calhoun DA. Aldosterone and metabolic dysfunction: an unresolved issue. Hypertension. 2009;53(4):585–6. doi:10.1161/HYPERTENSIONAHA.108.123406.

    Article  CAS  PubMed  Google Scholar 

  20. Sowers JR, Whaley-Connell A, Epstein M. Narrative review: the emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann Intern Med. 2009;150(11):776–83.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, et al. The metabolic syndrome. Endocr Rev. 2008;29(7):777–822. doi:10.1210/er.2008-0024.

    Article  CAS  PubMed  Google Scholar 

  22. Vaidya A, Underwood PC, Hopkins PN, Jeunemaitre X, Ferri C, Williams GH, et al. Abnormal aldosterone physiology and cardiometabolic risk factors. Hypertension. 2013;61(4):886–93. doi:10.1161/HYPERTENSIONAHA.111.00662. This report presents new information, whether novel indices of aldosterone responses to dietary sodium modulation, could predict cardiometabolic risk factors. The integration of aldosterone suppression and stimulation would provide an improved representation of aldosterone physiology in disease states that could offer new insights in the pathogenesis and treatment of cardiometabolic derangements.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harada E, Mizuno Y, Katoh D, Kashiwagi Y, Morita S, Nakayama Y, et al. Increased urinary aldosterone excretion is associated with subcutaneous not visceral, adipose tissue area in obese individuals: a possible manifestation of dysfunctional subcutaneous adipose tissue. Clin Endocrinol. 2013;79(4):510–6. doi:10.1111/cen.12083.

    Article  CAS  Google Scholar 

  24. Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, et al. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab. 2006;91(2):454–9. doi:10.1210/jc.2005-1733.

    Article  CAS  PubMed  Google Scholar 

  25. Ingelsson E, Pencina MJ, Tofler GH, Benjamin EJ, Lanier KJ, Jacques PF, et al. Multimarker approach to evaluate the incidence of the metabolic syndrome and longitudinal changes in metabolic risk factors: the Framingham Offspring Study. Circulation. 2007;116(9):984–92. doi:10.1161/CIRCULATIONAHA.107.708537.

    Article  CAS  PubMed  Google Scholar 

  26. Rowe JW, Tobin JD, Rosa RM, Andres R. Effect of experimental potassium deficiency on glucose and insulin metabolism. Metab Clin Exp. 1980;29(6):498–502.

    Article  CAS  PubMed  Google Scholar 

  27. Ferrannini E, Galvan AQ, Santoro D, Natali A. Potassium as a link between insulin and the renin-angiotensin-aldosterone system. J Hypertens Suppl. 1992;10(1):S5–10.

    Article  CAS  PubMed  Google Scholar 

  28. Luther JM. Effects of aldosterone on insulin sensitivity and secretion. Steroids. 2014;91:54–60. doi:10.1016/j.steroids.2014.08.016.

    Article  CAS  PubMed  Google Scholar 

  29. Luther JM, Brown NJ. The renin-angiotensin-aldosterone system and glucose homeostasis. Trends Pharmacol Sci. 2011;32(12):734–9. doi:10.1016/j.tips.2011.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luther JM, Luo P, Kreger MT, Brissova M, Dai C, Whitfield TT, et al. Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia. 2011;54(8):2152–63. doi:10.1007/s00125-011-2158-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mosso LM, Carvajal CA, Maiz A, Ortiz EH, Castillo CR, Artigas RA, et al. A possible association between primary aldosteronism and a lower beta-cell function. J Hypertens. 2007;25(10):2125–30. doi:10.1097/HJH.0b013e3282861fa4.

    Article  CAS  PubMed  Google Scholar 

  32. Garg R, Hurwitz S, Williams GH, Hopkins PN, Adler GK. Aldosterone production and insulin resistance in healthy adults. J Clin Endocrinol Metab. 2010;95(4):1986–90. doi:10.1210/jc.2009-2521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Williams TA, Monticone S, Urbanet R, Bertello C, Giraudo G, Vettor R, et al. Genes implicated in insulin resistance are down-regulated in primary aldosteronism patients. Mol Cell Endocrinol. 2012;355(1):162–8. doi:10.1016/j.mce.2012.02.007.

    Article  CAS  PubMed  Google Scholar 

  34. Rossi GP, Belfiore A, Bernini G, Fabris B, Caridi G, Ferri C, et al. Body mass index predicts plasma aldosterone concentrations in overweight-obese primary hypertensive patients. J Clin Endocrinol Metab. 2008;93(7):2566–71. doi:10.1210/jc.2008-0251.

    Article  CAS  PubMed  Google Scholar 

  35. Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Bader M, et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension. 2005;45(3):356–62. doi:10.1161/01.HYP.0000154361.47683.d3.

    Article  CAS  PubMed  Google Scholar 

  36. Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012;59(5):1069–78. doi:10.1161/HYPERTENSIONAHA.111.190223. Adipocytes possess aldosterone synthase and produce aldosterone in an Ang II/Ang II type 1 receptor/calcineurin/nuclear factor of activated T-cells–dependent manner. identifying adipocytes as a putative link between aldosterone and vascular dysfunction in diabetes mellitus–associated obesity.

    Article  CAS  PubMed  Google Scholar 

  37. Schinner S, Willenberg HS, Krause D, Schott M, Lamounier-Zepter V, Krug AW, et al. Adipocyte-derived products induce the transcription of the StAR promoter and stimulate aldosterone and cortisol secretion from adrenocortical cells through the Wnt-signaling pathway. Int J Obes. 2007;31(5):864–70. doi:10.1038/sj.ijo.0803508.

    CAS  Google Scholar 

  38. Nagase M, Yoshida S, Shibata S, Nagase T, Gotoda T, Ando K, et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol. 2006;17(12):3438–46. doi:10.1681/ASN.2006080944.

    Article  CAS  PubMed  Google Scholar 

  39. Lamounier-Zepter V, Ehrhart-Bornstein M, Bornstein SR. Mineralocorticoid-stimulating activity of adipose tissue. Best Pract Res Clin Endocrinol Metab. 2005;19(4):567–75. doi:10.1016/j.beem.2005.07.002.

    Article  CAS  PubMed  Google Scholar 

  40. Ehrhart-Bornstein M, Arakelyan K, Krug AW, Scherbaum WA, Bornstein SR. Fat cells may be the obesity-hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells. Endocr Res. 2004;30(4):865–70.

    Article  CAS  PubMed  Google Scholar 

  41. Goodfriend TL, Ball DL, Raff H, Bruder ED, Gardner HW, Spiteller G. Oxidized products of linoleic acid stimulate adrenal steroidogenesis. Endocr Res. 2002;28(4):325–30.

    Article  CAS  PubMed  Google Scholar 

  42. de Haro MC, Figueiredo VN, de Faria AP, Barbaro NR, Sabbatini AR, Quinaglia T, et al. High-circulating leptin levels are associated with increased blood pressure in uncontrolled resistant hypertension. J Hum Hypertens. 2013;27(4):225–30. doi:10.1038/jhh.2012.29.

    Article  CAS  Google Scholar 

  43. Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, et al. The adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation. 2015. doi:10.1161/CIRCULATIONAHA.115.018226. This report presents key information on the adipokine leptin is a direct regulator of aldosterone synthase (CYP11B2) expression and aldosterone release and promotes cardiovascular dysfunction via aldosterone-dependent mechanisms.

    PubMed  Google Scholar 

  44. Luo P, Dematteo A, Wang Z, Zhu L, Wang A, Kim HS, et al. Aldosterone deficiency prevents high-fat-feeding-induced hyperglycaemia and adipocyte dysfunction in mice. Diabetologia. 2013;56(4):901–10. doi:10.1007/s00125-012-2814-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baudrand R, Pojoga LH, Romero JR, Williams GH. Aldosterone’s mechanism of action: roles of lysine-specific demethylase 1, caveolin and striatin. Curr Opin Nephrol Hypertens. 2014;23(1):32–7. doi:10.1097/01.mnh.0000436543.48391.e0.

    Article  CAS  PubMed  Google Scholar 

  46. Shibata S, Fujita T. The kidneys and aldosterone/mineralocorticoid receptor system in salt-sensitive hypertension. Curr Hypertens Rep. 2011;13(2):109–15. doi:10.1007/s11906-010-0175-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zennaro MC, Le Menuet D, Viengchareun S, Walker F, Ricquier D, Lombes M. Hibernoma development in transgenic mice identifies brown adipose tissue as a novel target of aldosterone action. J Clin Invest. 1998;101(6):1254–60. doi:10.1172/JCI1915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Viengchareun S, Penfornis P, Zennaro MC, Lombes M. Mineralocorticoid and glucocorticoid receptors inhibit UCP expression and function in brown adipocytes. Am J Physiol Endocrinol Metab. 2001;280(4):E640–9.

    CAS  PubMed  Google Scholar 

  49. Penfornis P, Viengchareun S, Le Menuet D, Cluzeaud F, Zennaro MC, Lombes M. The mineralocorticoid receptor mediates aldosterone-induced differentiation of T37i cells into brown adipocytes. Am J Physiol Endocrinol Metab. 2000;279(2):E386–94.

    CAS  PubMed  Google Scholar 

  50. Caprio M, Feve B, Claes A, Viengchareun S, Lombes M, Zennaro MC. Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J. 2007;21(9):2185–94. doi:10.1096/fj.06-7970com.

    Article  CAS  PubMed  Google Scholar 

  51. Skurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab. 2007;92(3):1023–33. doi:10.1210/jc.2006-1055.

    Article  CAS  PubMed  Google Scholar 

  52. Bluher M. Are there still healthy obese patients? Curr Opin Endocrinol Diabetes Obes. 2012;19(5):341–6. doi:10.1097/MED.0b013e328357f0a3.

    Article  PubMed  Google Scholar 

  53. Kloting N, Fasshauer M, Dietrich A, Kovacs P, Schon MR, Kern M, et al. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab. 2010;299(3):E506–15. doi:10.1152/ajpendo.00586.2009.

    Article  PubMed  CAS  Google Scholar 

  54. Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, et al. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation. 2008;117(17):2253–61. doi:10.1161/CIRCULATIONAHA.107.748640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hirata A, Maeda N, Nakatsuji H, Hiuge-Shimizu A, Okada T, Funahashi T, et al. Contribution of glucocorticoid-mineralocorticoid receptor pathway on the obesity-related adipocyte dysfunction. Biochem Biophys Res Commun. 2012;419(2):182–7. doi:10.1016/j.bbrc.2012.01.139.

    Article  CAS  PubMed  Google Scholar 

  56. Boscaro M, Giacchetti G, Ronconi V. Visceral adipose tissue: emerging role of gluco- and mineralocorticoid hormones in the setting of cardiometabolic alterations. Ann N Y Acad Sci. 2012;1264:87–102. doi:10.1111/j.1749-6632.2012.06597.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Armani A, Marzolla V, Fabbri A, Caprio M. Cellular mechanisms of MR regulation of adipose tissue physiology and pathophysiology. J Mol Endocrinol. 2015;55(2):R1–10. doi:10.1530/JME-15-0122. This review summarizes the functions of cellular mechanisms of MR in the adipocyte, discusses potential signaling pathways mediating MR action, and describes post-translational modifications regulating its activity.

    Article  CAS  PubMed  Google Scholar 

  58. Berger S, Bleich M, Schmid W, Greger R, Schutz G. Mineralocorticoid receptor knockout mice: lessons on Na + metabolism. Kidney Int. 2000;57(4):1295–8. doi:10.1046/j.1523-1755.2000.00965.x.

    Article  CAS  PubMed  Google Scholar 

  59. Bleich M, Warth R, Schmidt-Hieber M, Schulz-Baldes A, Hasselblatt P, Fisch D, et al. Rescue of the mineralocorticoid receptor knock-out mouse. Pflugers Arch - Eur J Physiol. 1999;438(3):245–54. doi:10.1007/s004240050906.

    Article  CAS  Google Scholar 

  60. Lim HY, van den Brandt J, Fassnacht M, Allolio B, Herold MJ, Reichardt HM. Silencing of the mineralocorticoid receptor by ribonucleic acid interference in transgenic rats disrupts endocrine homeostasis. Mol Endocrinol. 2008;22(6):1304–11. doi:10.1210/me.2007-0417.

    Article  CAS  PubMed  Google Scholar 

  61. Ronzaud C, Loffing J, Bleich M, Gretz N, Grone HJ, Schutz G, et al. Impairment of sodium balance in mice deficient in renal principal cell mineralocorticoid receptor. J Am Soc Nephrol. 2007;18(6):1679–87. doi:10.1681/ASN.2006090975.

    Article  CAS  PubMed  Google Scholar 

  62. Ronzaud C, Loffing J, Gretz N, Schutz G, Berger S. Inducible renal principal cell-specific mineralocorticoid receptor gene inactivation in mice. Am J Physiol Renal Physiol. 2011;300(3):F756–60. doi:10.1152/ajprenal.00728.2009.

    Article  CAS  PubMed  Google Scholar 

  63. Grossmann C, Benesic A, Krug AW, Freudinger R, Mildenberger S, Gassner B, et al. Human mineralocorticoid receptor expression renders cells responsive for nongenotropic aldosterone actions. Mol Endocrinol. 2005;19(7):1697–710. doi:10.1210/me.2004-0469.

    Article  CAS  PubMed  Google Scholar 

  64. Dooley R, Harvey BJ, Thomas W. Non-genomic actions of aldosterone: from receptors and signals to membrane targets. Mol Cell Endocrinol. 2012;350(2):223–34. doi:10.1016/j.mce.2011.07.019.

    Article  CAS  PubMed  Google Scholar 

  65. Munoz-Durango N, Barake MF, Letelier NA, Campino C, Fardella CE, Kalergis AM. Immune system alterations by aldosterone during hypertension: from clinical observations to genomic and non-genomic mechanisms leading to vascular damage. Curr Mol Med. 2013;13(6):1035–46.

    Article  CAS  PubMed  Google Scholar 

  66. Yogi A, Callera GE, O'Connor S, Antunes TT, Valinsky W, Miquel P, et al. Aldosterone signaling through transient receptor potential melastatin 7 cation channel (TRPM7) and its alpha-kinase domain. Cell Signal. 2013;25(11):2163–75. doi:10.1016/j.cellsig.2013.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gros R, Ding Q, Sklar LA, Prossnitz EE, Arterburn JB, Chorazyczewski J, et al. GPR30 expression is required for the mineralocorticoid receptor–independent rapid vascular effects of aldosterone. Hypertension. 2011;57(3):442–51. doi:10.1161/hypertensionaha.110.161653.

    Article  CAS  PubMed  Google Scholar 

  68. Caroccia B, Seccia TM, Campos AG, Gioco F, Kuppusamy M, Ceolotto G, et al. GPER-1 and estrogen receptor-beta ligands modulate aldosterone synthesis. Endocrinology. 2014;155(11):4296–304. doi:10.1210/en.2014-1416.

    Article  PubMed  CAS  Google Scholar 

  69. Sharma G, Hu C, Brigman JL, Zhu G, Hathaway HJ, Prossnitz ER. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state. Endocrinology. 2013;154(11):4136–45. doi:10.1210/en.2013-1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhu P, Yuen JML, Sham KWY, Cheng CHK. GPER mediates the inhibitory actions of estrogen on adipogenesis in 3T3-L1 cells through perturbation of mitotic clonal expansion. Gen Comp Endocrinol. 2013;193:19–26. doi:10.1016/j.ygcen.2013.07.004.

    Article  CAS  PubMed  Google Scholar 

  71. Friso S, Carvajal CA, Fardella CE, Olivieri O. Epigenetics and arterial hypertension: the challenge of emerging evidence. Transl Res. 2015;165(1):154–65. doi:10.1016/j.trsl.2014.06.007.

    Article  CAS  PubMed  Google Scholar 

  72. Choi SW, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1(1):8–16. doi:10.3945/an.110.1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Demura M, Demura Y, Takeda Y, Saijoh K. Dynamic regulation of the angiotensinogen gene by DNA methylation, which is influenced by various stimuli experienced in daily life. Hypertens Res. 2015;38(8):519–27. doi:10.1038/hr.2015.42. This review highlights new evidences of epigenetic control of angiotensin gene (Agt) in adipose tissue. Agt gene, a RAAS gene, dynamically change its expression because exogenous and endogenous factors, as salt, glucocorticoids and mineralocorticoids in visceral adipose tissue.

    Article  CAS  PubMed  Google Scholar 

  74. Wang F, Demura M, Cheng Y, Zhu A, Karashima S, Yoneda T, et al. Dynamic CCAAT/enhancer binding protein-associated changes of DNA methylation in the angiotensinogen gene. Hypertension. 2014;63(2):281–8. doi:10.1161/HYPERTENSIONAHA.113.02303.

    Article  CAS  PubMed  Google Scholar 

  75. Howard B, Wang Y, Xekouki P, Faucz FR, Jain M, Zhang L, et al. Integrated analysis of genome-wide methylation and gene expression shows epigenetic regulation of CYP11B2 in aldosteronomas. J Clin Endocrinol Metab. 2014;99(3):E536–43. doi:10.1210/jc.2013-3495.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Robertson S, MacKenzie SM, Alvarez-Madrazo S, Diver LA, Lin J, Stewart PM, et al. MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. Hypertension. 2013;62(3):572–8. doi:10.1161/HYPERTENSIONAHA.113.01102.

    Article  CAS  PubMed  Google Scholar 

  77. Sober S, Laan M, Annilo T. MicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochem Biophys Res Commun. 2010;391(1):727–32. doi:10.1016/j.bbrc.2009.11.128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kemp JR, Unal H, Desnoyer R, Yue H, Bhatnagar A, Karnik SS. Angiotensin II-regulated microRNA 483-3p directly targets multiple components of the renin-angiotensin system. J Mol Cell Cardiol. 2014;75:25–39. doi:10.1016/j.yjmcc.2014.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Misra M. Obesity pharmacotherapy: current perspectives and future directions. Curr Cardiol Rev. 2013;9(1):33–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Khorassani FE, Misher A, Garris S. Past and present of antiobesity agents: focus on monoamine modulators. Am J Health Syst Pharm. 2015;72(9):697–706. doi:10.2146/ajhp140034.

    Article  CAS  PubMed  Google Scholar 

  81. Costantino L, Barlocco D. New perspectives on the development of antiobesity drugs. Future Med Chem. 2015;7(3):315–36. doi:10.4155/fmc.14.167.

    Article  CAS  PubMed  Google Scholar 

  82. Gomez-Sanchez CE. What is the role of the adipocyte mineralocorticoid receptor in the metabolic syndrome? Hypertension. 2015;66(1):17–9. doi:10.1161/HYPERTENSIONAHA.115.05148.

    Article  CAS  PubMed  Google Scholar 

  83. Jing F, Mogi M, Horiuchi M. Role of renin–angiotensin–aldosterone system in adipose tissue dysfunction. Mol Cell Endocrinol. 2013;378(1–2):23–8. doi:10.1016/j.mce.2012.03.005.

    Article  CAS  PubMed  Google Scholar 

  84. Brown NJ. This is not Dr. Conn’s aldosterone anymore. Trans Am Clin Climatol Assoc. 2011;122:229–43.

    PubMed  PubMed Central  Google Scholar 

  85. Fontana V, de Faria AP, Oliveira-Paula GH, Silva PS, Biagi C, Tanus-Santos JE, et al. Effects of angiotensin-converting enzyme inhibition on leptin and adiponectin levels in essential hypertension. Basic Clin Pharmacol Toxicol. 2014;114(6):472–5. doi:10.1111/bcpt.12195.

    Article  CAS  PubMed  Google Scholar 

  86. Nedogoda SV, Ledyaeva AA, Chumachok EV, Tsoma VV, Mazina G, Salasyuk AS, et al. Randomized trial of perindopril, enalapril, losartan and telmisartan in overweight or obese patients with hypertension. Clin Drug Investig. 2013;33(8):553–61. doi:10.1007/s40261-013-0094-9.

    Article  CAS  PubMed  Google Scholar 

  87. Sarzani R, Guerra F, Mancinelli L, Buglioni A, Franchi E, Dessi-Fulgheri P. Plasma aldosterone is increased in class 2 and 3 obese essential hypertensive patients despite drug treatment. Am J Hypertens. 2012;25(7):818–26. doi:10.1038/ajh.2012.47.

    Article  CAS  PubMed  Google Scholar 

  88. Schrier RW. Aldosterone ‘escape’ vs ‘breakthrough’. Nat Rev Nephrol. 2010;6(2):61. doi:10.1038/nrneph.2009.228.

    Article  PubMed  Google Scholar 

  89. Marcus Y, Shefer G, Sasson K, Kohen F, Limor R, Pappo O, et al. Angiotensin 1–7 as means to prevent the metabolic syndrome: lessons from the fructose-fed rat model. Diabetes. 2013;62(4):1121–30. doi:10.2337/db12-0792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schuchard J, Winkler M, Stölting I, Schuster F, Vogt FM, Barkhausen J, et al. Lack of weight gain after angiotensin AT1 receptor blockade in diet-induced obesity is partly mediated by an angiotensin-(1–7)/Mas-dependent pathway. Br J Pharmacol. 2015;172(15):3764–78. doi:10.1111/bph.13172.

    Article  CAS  PubMed  Google Scholar 

  91. Azizi M, Amar L, Menard J. Aldosterone synthase inhibition in humans. Nephrol Dial Transplant. 2013;28(1):36–43. doi:10.1093/ndt/gfs388. This review summarizes recent in vitro and preclinical studies of CYP11B2 inhibitors, hormonal and haemodynamic effects, and highlights potential side-effects as a class.

    Article  CAS  PubMed  Google Scholar 

  92. Papillon JPN, Lou C, Singh AK, Adams CM, Ksander GM, Beil ME, et al. Discovery of N-[5-(6-chloro-3-cyano-1-methyl-1H-indol-2-yl)-pyridin-3-ylmethyl]-ethanesulfonamide, a cortisol-sparing CYP11B2 inhibitor that lowers aldosterone in human subjects. J Med Chem. 2015. doi:10.1021/acs.jmedchem.5b01545.

    Google Scholar 

  93. Strushkevich N, Gilep AA, Shen L, Arrowsmith CH, Edwards AM, Usanov SA, et al. Structural insights into aldosterone synthase substrate specificity and targeted inhibition. Mol Endocrinol. 2013;27(2):315–24. doi:10.1210/me.2012-1287. This paper reports the crystal structures of human aldosterone synthase in complex with a substrate deoxycorticosterone and an first generation CYP11B2 inhibitor fadrozole.

    Article  CAS  PubMed  Google Scholar 

  94. Cerny MA, Csengery A, Schmenk J, Frederick K. Development of CYP11B1 and CYP11B2 assays utilizing homogenates of adrenal glands: utility of monkey as a surrogate for human. J Steroid Biochem Mol Biol. 2015;154:197–205. doi:10.1016/j.jsbmb.2015.08.004.

    Article  CAS  PubMed  Google Scholar 

  95. Armani A, Cinti F, Marzolla V, Morgan J, Cranston GA, Antelmi A, et al. Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in high-fat-diet-fed mice. FASEB J. 2014;28(8):3745–57. doi:10.1096/fj.13-245415.

    Article  CAS  PubMed  Google Scholar 

  96. Garg R, Kneen L, Williams GH, Adler GK. Effect of mineralocorticoid receptor antagonist on insulin resistance and endothelial function in obese subjects. Diabetes Obes Metab. 2014;16(3):268–72. doi:10.1111/dom.12224. This paper reports the results of the single clinical study of MR antagonists for the treatment of obesity, However only non-diabetic healthy obese were included in the study.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Peelman F, Zabeau L, Moharana K, Savvides SN, Tavernier J. 20 years of leptin: insights into signaling assemblies of the leptin receptor. J Endocrinol. 2014;223(1):T9–23. doi:10.1530/joe-14-0264.

    Article  CAS  PubMed  Google Scholar 

  98. Gertler A, Solomon G. Leptin-activity blockers: development and potential use in experimental biology and medicine. Can J Physiol Pharmacol. 2013;91(11):873–82. doi:10.1139/cjpp-2013-0012.

    Article  CAS  PubMed  Google Scholar 

  99. Okada-Iwabu M, Iwabu M, Ueki K, Yamauchi T, Kadowaki T. Perspective of small-molecule adipoR agonist for type 2 diabetes and short life in obesity. Diabetes Metab J. 2015;39(5):363–72. doi:10.4093/dmj.2015.39.5.363.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lim S, Quon MJ, Koh KK. Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis. 2014;233(2):721–8. doi:10.1016/j.atherosclerosis.2014.01.051.

    Article  CAS  PubMed  Google Scholar 

  101. Tanabe H, Fujii Y, Okada-Iwabu M, Iwabu M, Nakamura Y, Hosaka T, et al. Crystal structures of the human adiponectin receptors. Nature. 2015;520(7547):312–6. doi:10.1038/nature14301. This paper reports the crystal structures of human AdipoR1 and AdipoR2, a novel class of receptor structures, with a seven-transmembrane helices arrangement, conformationally distinct from those of G-protein-coupled receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This article was funded by CONICYT-FONDECYT grants No. 1130427, No. 1150437 and No. 1160695, IMII P09/016-F ICM, CORFO 13 CTi-21526-P1 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Fardella.

Ethics declarations

Conflict of Interest

Dr. Carvajal reports grants and personal fees from Fondecyt No. 1130427, from Fondecyt No. 1150437, from IMII P09/016-F ICM, and from CORFO 13CTI-21526-P1.

Dr. Baudrand reports grants and personal fees from Fondecyt No. 1130427, and from Fondecyt No. 1150437.

Dr. Fardella reports grants and personal fees from Fondecyt No. 1130427, from Fondecyt No. 1150437, from IMII P09/016-F ICM, and from CORFO 13CTI-21526-P1.

Dr. Lagos reports grants and personal fees from CORFO 13CTI-21526-P1.

Dr. Vecchiola reports grants and personal fees from Fondecyt No. 1130427, from Fondecyt No. 1150437, from IMII P09/016-F ICM, and from CORFO 13CTI-21526-P1.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Hypertension and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecchiola, A., Lagos, C.F., Carvajal, C.A. et al. Aldosterone Production and Signaling Dysregulation in Obesity. Curr Hypertens Rep 18, 20 (2016). https://doi.org/10.1007/s11906-016-0626-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-016-0626-9

Keywords

Navigation