Skip to main content
Log in

The Sympathetic Nervous System in Chronic Kidney Disease

  • Secondary Hypertension: Adrenal and Nervous System Mechanisms (S Oparil, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Accumulating evidence has shown that the sympathetic nervous system plays an important role in the pathophysiology and progression of several chronic disorders, e.g., arterial hypertension, cardiac arrhythmias, heart failure, and in particular chronic kidney disease (CKD). Experimental and clinical studies provide evidence that sympathetic inhibition using either sympatholytic pharmacotherapy or catheter-based renal denervation has beneficial effects in patients with CKD. Randomized clinical trials are needed to characterize the underlying pathophysiological mechanisms, and systematically evaluate the therapeutic effects of sympathetic inhibition in this high-risk patient population. In this review current knowledge of the role of the sympathetic nervous system in the development and progression of CKD will be summarized, and novel treatment options targeting sympathetic nervous system activity will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACE:

angiotensin-converting enzyme

ADMA:

asymmetric dimethlyarginine

Ang II:

angiotensin II

ARB:

angiotensin receptor blocker

BP:

blood pressure

CKD:

chronic kidney disease

ESRD:

end-stage renal disease

GFR:

glomerular filtration rate

MSNA:

muscle sympathetic nerve activity

NE:

norepinephrine

NO:

nitric oxide

NOS:

nitric oxide synthase

RAAS:

renin-angiotensin-aldosterone system

SNS:

sympathetic nervous system.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Mahmoodi BK, Matsushita K, Woodward M, Blankestijn PJ, Cirillo M, Ohkubo T, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet. 2012;380(9854):1649–61. doi:10.1016/s0140-6736(12)61272-0. Important overwiev regarding the mortality of CK with and without hypertension.

    Article  PubMed  Google Scholar 

  2. Borrelli S, De Nicola L, Stanzione G, Conte G, Minutolo R. Resistant hypertension in nondialysis chronic kidney disease. Int J Hypertens. 2013;2013:1–8. doi:10.1155/2013/929183.

    Article  Google Scholar 

  3. Sarafidis PA, Li S, Chen SC, Collins AJ, Brown WW, Klag MJ, et al. Hypertension awareness, treatment, and control in chronic kidney disease. Am J Med. 2008;121(4):332–40. doi:10.1016/j.amjmed.2007.11.025.

    Article  PubMed  Google Scholar 

  4. Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med. 1999;340(17):1321–8. doi:10.1056/NEJM199904293401704.

    Article  PubMed  CAS  Google Scholar 

  5. • Sobotka PA, Mahfoud F, Schlaich MP, Hoppe UC, Böhm M, Krum H. Sympatho-renal axis in chronic disease. Clin Res Cardiol. 2011;100(12):1049–57. doi:10.1007/s00392-011-0335-y. Review article on the role of the sympathetic nervous system in different disease states and potential future indication of renal denervation.

    Article  PubMed  Google Scholar 

  6. DiBona GF. Neural control of the kidney: past, present, and future. Hypertension. 2003;41(3 Pt 2):621–4. doi:10.1161/01.HYP.0000047205.52509.8A.

    Article  PubMed  CAS  Google Scholar 

  7. Buchner N, Vonend O, Rump LC. Pathophysiology of hypertension: what's new? Herz. 2006;31(4):294–302. doi:10.1007/s00059-006-2821-y.

    Article  PubMed  Google Scholar 

  8. DiBona GF. Physiology in perspective: The wisdom of the body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol. 2005;289(3):R633–41. doi:10.1152/ajpregu.00258.2005.

    Article  PubMed  CAS  Google Scholar 

  9. Vonend O, Okonek A, Stegbauer J, Habbel S, Quack I, Rump LC. Renovascular effects of sympathetic cotransmitters ATP and NPY are age-dependent in spontaneously hypertensive rats. Cardiovasc Res. 2005;66(2):345–52. doi:10.1016/j.cardiores.2004.12.005.

    Article  PubMed  CAS  Google Scholar 

  10. Ishii M, Ikeda T, Takagi M, Sugimoto T, Atarashi K, Igari T, et al. Elevated plasma catecholamines in hypertensives with primary glomerular diseases. Hypertension. 1983;5(4):545–51.

    Article  PubMed  CAS  Google Scholar 

  11. • Converse Jr RL, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912–8. doi:10.1056/NEJM199212313272704. Important work about the sympathetic overactivity in patients with CKD.

    Article  PubMed  Google Scholar 

  12. Recordati G, Moss NG, Genovesi S, Rogenes P. Renal chemoreceptors. J Auton Nerv Syst. 1981;3(2–4):237–51.

    Article  PubMed  CAS  Google Scholar 

  13. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106(15):1974–9.

    Article  PubMed  Google Scholar 

  14. Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension. 2011;57(4):846–51. doi:10.1161/HYPERTENSIONAHA.110.164780.

    Article  PubMed  CAS  Google Scholar 

  15. • Penne EL, Neumann J, Klein IH, Oey PL, Bots ML, Blankestijn PJ. Sympathetic hyperactivity and clinical outcome in chronic kidney disease patients during standard treatment. J Nephrol. 2009;22(2):208–15. Important scientific statement regarding sympathetic hyperactivity in CKD.

    PubMed  Google Scholar 

  16. Ditting T, Freisinger W, Siegel K, Fiedler C, Small L, Neuhuber W, et al. Tonic postganglionic sympathetic inhibition induced by afferent renal nerves? Hypertension. 2012;59(2):467–76. doi:10.1161/HYPERTENSIONAHA.111.185538.

    Article  PubMed  CAS  Google Scholar 

  17. Bigazzi R, Kogosov E, Campese VM. Altered norepinephrine turnover in the brain of rats with chronic renal failure. J Am Soc Nephrol. 1994;4(11):1901–7.

    PubMed  CAS  Google Scholar 

  18. Campese VM. Neurogenic factors and hypertension in chronic renal failure. J Nephrol. 1997;10(4):184–7.

    PubMed  CAS  Google Scholar 

  19. Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25(4 Pt 2):878–82.

    Article  PubMed  CAS  Google Scholar 

  20. Campese VM, Kogosov E, Koss M. Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am J Kidney Dis. 1995;26(5):861–5.

    Article  PubMed  CAS  Google Scholar 

  21. Ye S, Ozgur B, Campese VM. Renal afferent impulses, the posterior hypothalamus, and hypertension in rats with chronic renal failure. Kidney Int. 1997;51(3):722–7.

    Article  PubMed  CAS  Google Scholar 

  22. Ye S, Zhong H, Yanamadala V, Campese VM. Renal injury caused by intrarenal injection of phenol increases afferent and efferent renal sympathetic nerve activity. Am J Hypertens. 2002;15(8):717–24.

    Article  PubMed  CAS  Google Scholar 

  23. Katholi RE, Whitlow PL, Hageman GR, Woods WT. Intrarenal adenosine produces hypertension by activating the sympathetic nervous system via the renal nerves in the dog. J Hypertens. 1984;2(4):349–59.

    PubMed  CAS  Google Scholar 

  24. Ye S, Gamburd M, Mozayeni P, Koss M, Campese VM. A limited renal injury may cause a permanent form of neurogenic hypertension. Am J Hypertens. 1998;11(6 Pt 1):723–8.

    Article  PubMed  CAS  Google Scholar 

  25. Klein IH, Ligtenberg G, Oey PL, Koomans HA, Blankestijn PJ. Sympathetic activity is increased in polycystic kidney disease and is associated with hypertension. J Am Soc Nephrol. 2001;12(11):2427–33.

    PubMed  CAS  Google Scholar 

  26. Bernhardt WM, Wiesener MS, Weidemann A, Schmitt R, Weichert W, Lechler P, et al. Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am J Pathol. 2007;170(3):830–42. doi:10.2353/ajpath.2007.060455.

    Article  PubMed  CAS  Google Scholar 

  27. Schlaich MP, Socratous F, Hennebry S, Eikelis N, Lambert EA, Straznicky N, et al. Sympathetic activation in chronic renal failure. J Am Soc Nephrol. 2009;20(5):933–9. doi:10.1681/ASN.2008040402.

    Article  PubMed  Google Scholar 

  28. Lyson T, Ermel LD, Belshaw PJ, Alberg DG, Schreiber SL, Victor RG. Cyclosporine- and FK506-induced sympathetic activation correlates with calcineurin-mediated inhibition of T-cell signaling. Circ Res. 1993;73(3):596–602.

    Article  PubMed  CAS  Google Scholar 

  29. Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992;262(6 Pt 1):E763–78.

    PubMed  CAS  Google Scholar 

  30. Carlson SH, Wyss JM. Neurohormonal regulation of the sympathetic nervous system: new insights into central mechanisms of action. Curr Hypertens Rep. 2008;10(3):233–40.

    Article  PubMed  CAS  Google Scholar 

  31. Hering D, Zdrojewski Z, Krol E, Kara T, Kucharska W, Somers VK, et al. Tonic chemoreflex activation contributes to the elevated muscle sympathetic nerve activity in patients with chronic renal failure. J Hypertens. 2007;25(1):157–61. doi:10.1097/HJH.0b013e3280102d92.

    Article  PubMed  CAS  Google Scholar 

  32. Mallamaci F, Tripepi G, Maas R, Malatino L, Boger R, Zoccali C. Analysis of the relationship between norepinephrine and asymmetric dimethyl arginine levels among patients with end-stage renal disease. J Am Soc Nephrol. 2004;15(2):435–41.

    Article  PubMed  CAS  Google Scholar 

  33. Grassi G, Seravalle G, Ghiadoni L, Tripepi G, Bruno RM, Mancia G, et al. Sympathetic nerve traffic and asymmetric dimethylarginine in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(11):2620–7. doi:10.2215/CJN.06970711.

    Article  PubMed  CAS  Google Scholar 

  34. Bergamaschi CT, Campos RR, Lopes OU. Rostral ventrolateral medulla : A source of sympathetic activation in rats subjected to long-term treatment with L-NAME. Hypertension. 1999;34(4 Pt 2):744–7.

    Article  PubMed  CAS  Google Scholar 

  35. Hijmering ML, Stroes ES, Olijhoek J, Hutten BA, Blankestijn PJ, Rabelink TJ. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J Am Coll Cardiol. 2002;39(4):683–8.

    Article  PubMed  Google Scholar 

  36. Augustyniak RA, Victor RG, Morgan DA, Zhang W. L-NAME- and ADMA-induced sympathetic neural activation in conscious rats. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):R726–32. doi:10.1152/ajpregu.00768.2004.

    Article  PubMed  CAS  Google Scholar 

  37. Zanzinger J. Role of nitric oxide in the neural control of cardiovascular function. Cardiovasc Res. 1999;43(3):639–49.

    Article  PubMed  CAS  Google Scholar 

  38. Zanzinger J, Czachurski J, Seller H. Neuronal nitric oxide reduces sympathetic excitability by modulation of central glutamate effects in pigs. Circ Res. 1997;80(4):565–71.

    Article  PubMed  CAS  Google Scholar 

  39. Sander M, Chavoshan B, Victor RG. A large blood pressure-raising effect of nitric oxide synthase inhibition in humans. Hypertension. 1999;33(4):937–42.

    Article  PubMed  CAS  Google Scholar 

  40. Sander D, Kukla C, Klingelhofer J, Winbeck K, Conrad B. Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: A 3-year follow-up study. Circulation. 2000;102(13):1536–41.

    Article  PubMed  CAS  Google Scholar 

  41. Kielstein JT, Zoccali C. Asymmetric dimethylarginine: a novel marker of risk and a potential target for therapy in chronic kidney disease. Curr Opin Nephrol Hypertens. 2008;17(6):609–15. doi:10.1097/MNH.0b013e328314b6ca.

    Article  PubMed  CAS  Google Scholar 

  42. Zoccali C, Mallamaci F, Maas R, Benedetto FA, Tripepi G, Malatino LS, et al. Left ventricular hypertrophy, cardiac remodeling and asymmetric dimethylarginine (ADMA) in hemodialysis patients. Kidney Int. 2002;62(1):339–45. doi:10.1046/j.1523-1755.2002.00437.x.

    Article  PubMed  CAS  Google Scholar 

  43. Shi B, Ni Z, Zhou W, Yu Z, Gu L, Mou S, et al. Circulating levels of asymmetric dimethylarginine are an independent risk factor for left ventricular hypertrophy and predict cardiovascular events in pre-dialysis patients with chronic kidney disease. Eur J Intern Med. 2010;21(5):444–8. doi:10.1016/j.ejim.2010.07.001.

    Article  PubMed  CAS  Google Scholar 

  44. Campese VM, Ye S, Zhong H, Yanamadala V, Ye Z, Chiu J. Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity. Am J Physiol Heart Circ Physiol. 2004;287(2):H695–703. doi:10.1152/ajpheart.00619.2003.

    Article  PubMed  CAS  Google Scholar 

  45. Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116(1):85–97. doi:10.1161/CIRCULATIONAHA.106.678342.

    Article  PubMed  Google Scholar 

  46. Klein IH, Ligtenberg G, Oey PL, Koomans HA, Blankestijn PJ. Enalapril and losartan reduce sympathetic hyperactivity in patients with chronic renal failure. J Am Soc Nephrol. 2003;14(2):425–30.

    Article  PubMed  CAS  Google Scholar 

  47. Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, et al. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest. 2005;115(5):1275–80. doi:10.1172/JCI24066.

    PubMed  CAS  Google Scholar 

  48. Li G, Xu J, Wang P, Velazquez H, Li Y, Wu Y, et al. Catecholamines regulate the activity, secretion, and synthesis of renalase. Circulation. 2008;117(10):1277–82. doi:10.1161/CIRCULATIONAHA.107.732032.

    Article  PubMed  CAS  Google Scholar 

  49. Siddiqi L, Oey PL, Blankestijn PJ. Aliskiren reduces sympathetic nerve activity and blood pressure in chronic kidney disease patients. Nephrol Dial Transplant. 2011;26(9):2930–4. doi:10.1093/ndt/gfq857.

    Article  PubMed  CAS  Google Scholar 

  50. Cice G, Di Benedetto A, D'Isa S, D'Andrea A, Marcelli D, Gatti E, et al. Effects of telmisartan added to Angiotensin-converting enzyme inhibitors on mortality and morbidity in hemodialysis patients with chronic heart failure a double-blind, placebo-controlled trial. J Am Coll Cardiol. 2010;56(21):1701–8. doi:10.1016/j.jacc.2010.03.105.

    Article  PubMed  CAS  Google Scholar 

  51. Amann K, Koch A, Hofstetter J, Gross ML, Haas C, Orth SR, et al. Glomerulosclerosis and progression: effect of subantihypertensive doses of alpha and beta blockers. Kidney Int. 2001;60(4):1309–23. doi:10.1046/j.1523-1755.2001.00936.x.

    Article  PubMed  CAS  Google Scholar 

  52. Cice G, Ferrara L, D'Andrea A, D'Isa S, Di Benedetto A, Cittadini A, et al. Carvedilol increases two-year survivalin dialysis patients with dilated cardiomyopathy: a prospective, placebo-controlled trial. J Am Coll Cardiol. 2003;41(9):1438–44.

    Article  PubMed  CAS  Google Scholar 

  53. Tangri N, Shastri S, Tighiouart H, Beck GJ, Cheung AK, Eknoyan G, et al. beta-Blockers for prevention of sudden cardiac death in patients on hemodialysis: a propensity score analysis of the HEMO Study. Am J Kidney Dis. 2011;58(6):939–45. doi:10.1053/j.ajkd.2011.06.024.

    Article  PubMed  CAS  Google Scholar 

  54. Bakris GL, Hart P, Ritz E. Beta blockers in the management of chronic kidney disease. Kidney Int. 2006;70(11):1905–13. doi:10.1038/sj.ki.5001835.

    PubMed  CAS  Google Scholar 

  55. Vonend O, Marsalek P, Russ H, Wulkow R, Oberhauser V, Rump LC. Moxonidine treatment of hypertensive patients with advanced renal failure. J Hypertens. 2003;21(9):1709–17. doi:10.1097/01.hjh.0000084733.53355.c3.

    Article  PubMed  CAS  Google Scholar 

  56. Siddiqi L, Joles JA, Oey PL, Blankestijn PJ. Atorvastatin reduces sympathetic activity in patients with chronic kidney disease. J Hypertens. 2011;29(11):2176–80. doi:10.1097/HJH.0b013e32834ae3c7.

    Article  PubMed  CAS  Google Scholar 

  57. Mahfoud F. [Renal denervation in hypertension - pro]. Dtsch Med Wochenschr. 2012;137(14):720. doi:10.1055/s-0032-1304839.

    Article  PubMed  CAS  Google Scholar 

  58. • Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81. doi:10.1016/S0140-6736(09)60566-3. First-in-man report of renal denervation in patients with resistant hypertension.

    Article  PubMed  Google Scholar 

  59. • Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9. doi:10.1016/S0140-6736(10)62039-9. Randomized controlled trial investigating the effect of renal denervation versus medical treatment alone in patients with resistant hypertension.

    Article  PubMed  Google Scholar 

  60. Krum H, Barman N, Schlaich M, Sobotka P, Esler M, Mahfoud F, et al. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57(5):911–7. doi:10.1161/HYPERTENSIONAHA.110.163014.

    Article  CAS  Google Scholar 

  61. • Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, et al. Renal Hemodynamics and Renal Function After Catheter-Based Renal Sympathetic Denervation in Patients With Resistant Hypertension. Hypertension. 2012. doi:10.1161/HYPERTENSIONAHA.112.193870. Study showing that renal denervation reduces renal resistive indices and number of patients with micro- and macroalbuminuria, without impairing renal function.

    Google Scholar 

  62. Ott C, Janka R, Schmid A, Titze S, Ditting T, Sobotka PA, et al. Vascular and renal hemodynamic changes after renal denervation. Clin J Am Soc Nephrol. 2013. doi:10.2215/CJN.08500812.

    PubMed  Google Scholar 

  63. Ott C, Schmid A, Ditting T, Sobotka PA, Veelken R, Uder M, et al. Renal denervation in a hypertensive patient with end-stage renal disease and small arteries: a direction for future research. J Clin Hypertens. 2012;14(11):799–801. doi:10.1111/jch.12017.

    Article  Google Scholar 

  64. • Schlaich MP, Bart B, Hering D, Walton A, Marusic P, Mahfoud F, et al. Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol. 2013. doi:10.1016/j.ijcard.2013.01.218. Important work about RDN in patients with ESRD.

    Google Scholar 

  65. Dörr O, Liebetrau C, Mollmann H, Achenbach S, Sedding D, Szardien S, et al. Renal sympathetic denervation does not aggravate functional or structural renal damage. J Am Coll Cardiol. 2012. doi:10.1016/j.jacc.2012.09.051.

    PubMed  Google Scholar 

  66. Zilch O, Vos PF, Oey PL, Cramer MJ, Ligtenberg G, Koomans HA, et al. Sympathetic hyperactivity in haemodialysis patients is reduced by short daily haemodialysis. J Hypertens. 2007;25(6):1285–9. doi:10.1097/HJH.0b013e3280f9df85.

    Article  PubMed  CAS  Google Scholar 

  67. Friedman O, Bradley TD, Chan CT, Parkes R, Logan AG. Relationship between overnight rostral fluid shift and obstructive sleep apnea in drug-resistant hypertension. Hypertension. 2010;56(6):1077–82. doi:10.1161/HYPERTENSIONAHA.110.154427.

    Article  PubMed  CAS  Google Scholar 

  68. Grassi G, Bertoli S, Seravalle G. Sympathetic nervous system: role in hypertension and in chronic kidney disease. Curr Opin Nephrol Hypertens. 2012;21(1):46–51. doi:10.1097/MNH.0b013e32834db45d.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

All authors participating have disclosed potential conflicts of interest that might cause a bias in the article. The institution has received scientific support from Medtronic/Ardian.

Michael Böhm, Roland E. Schmieder, and Felix Mahfoud were investigators in the Symplicity HTN-1 and HTN-2 trials. Christian Ukena, Michael Böhm, Roland E. Schmieder, and Felix Mahfoud have received speaker honoraria and consulting fees from Medtronic/Ardian. Christian Ukena, Michael Böhm, and Felix Mahfoud are supported by Deutsche Forschungsgemeinschaft (KFO 196). Sebastian Ewen and Felix Mahfoud are supported by Deutsche Hochdruckliga. Dominik Linz and Felix Mahfoud are supported by Deutsche Gesellschaft für Kardiologie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Mahfoud.

Additional information

Authors’ Note

Sebastian Ewen, Christian Ukena, Dominik Linz, Roland E. Schmieder, Michael Böhm, and Felix Mahfoud have substantially contributed to the interpretation of data and drafting of the article. All authors have approved the final version of the manuscript to be published.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewen, S., Ukena, C., Linz, D. et al. The Sympathetic Nervous System in Chronic Kidney Disease. Curr Hypertens Rep 15, 370–376 (2013). https://doi.org/10.1007/s11906-013-0365-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0365-0

Keywords

Navigation