Skip to main content
Log in

Legacy Effects from DCCT and UKPDS: What They Mean and Implications for Future Diabetes Trials

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

The United Kingdom Prospective Diabetes Study (UKPDS) and the Diabetes Chronic Complications Trial (DCCT) are two landmark trials that convincingly demonstrated that tight glycemic control has beneficial effects on microvascular end points. These studies also revealed a “legacy effect,” which is a sustained benefit with respect to cardiovascular disease outcomes seen long after the conclusion of the trial. We discuss possible molecular mechanisms that could play a role in causing the legacy effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Yach D, Leeder SR, Bell J, Kistnasamy B: Global chronic diseases. Science 2005, 307:317.

    Article  CAS  PubMed  Google Scholar 

  2. King H, Aubert RE, Herman WH: Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 1998, 21:1414–1431.

    Article  CAS  PubMed  Google Scholar 

  3. Holman RR, Paul SK, Bethel MA, et al.: Long-term follow-up after tight control of blood pressure in type 2 diabetes. N Engl J Med 2008, 359:1565–1576.

    Article  CAS  PubMed  Google Scholar 

  4. Implications of the United Kingdom Prospective Diabetes Study. Diabetes Care 2000, 23(Suppl 1):S27–31.

  5. Holman RR, Paul SK, Bethel MA, et al.: 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008, 359:1577–1589.

    Article  CAS  PubMed  Google Scholar 

  6. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993, 329:977–986.

  7. Nathan DM, Cleary PA, Backlund JY, et al.: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005, 353:2643–2653.

    Article  PubMed  Google Scholar 

  8. Albers JW, Herman WH, Pop-Busui R, et al.: Effect Of Prior Intensive Insulin Treatment During The Diabetes Control And Complications Trial (DCCT) On Peripheral Neuropathy In Type 1 Diabetes During The Epidemiology Of Diabetes Interventions, And Complications (EDIC) Study. Diabetes Care 2010 (in press).

  9. White NH, Sun W, Cleary PA, et al.: Effect of Prior Intensive Therapy in Type 1 Diabetes Mellitus on 10-year Progression of Retinopathy in the DCCT/EDIC: Comparison of Adults and Adolescents. Diabetes 2010 (in press).

  10. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 2003, 290:2159–2167.

  11. Pop-Busui R, Low PA, Waberski BH, et al.: Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation 2009, 119:2886–2893.

    Article  CAS  PubMed  Google Scholar 

  12. Nathan DM, Lachin J, Cleary P, et al.: Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N Engl J Med 2003, 348:2294–2303.

    Article  PubMed  Google Scholar 

  13. Gaede P, Lund-Andersen H, Parving HH, Pedersen O: Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008, 358:580–591.

    Article  CAS  PubMed  Google Scholar 

  14. Chen HS, Wu TE, Jap TS, et al.: Beneficial effects of insulin on glycemic control and beta-cell function in newly diagnosed type 2 diabetes with severe hyperglycemia after short-term intensive insulin therapy. Diabetes Care 2008, 31:1927–1932.

    Article  CAS  PubMed  Google Scholar 

  15. Bonner-Weir S, Trent DF, Honey RN, Weir GC: Responses of neonatal rat islets to streptozotocin: limited B-cell regeneration and hyperglycemia. Diabetes 1981, 30:64–69.

    Article  CAS  PubMed  Google Scholar 

  16. Bonner-Weir S, Trent DF, Weir GC: Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest 1983, 71:1544–1553.

    Article  CAS  PubMed  Google Scholar 

  17. Rossetti L, Shulman GI, Zawalich W, DeFronzo RA: Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest 1987, 80:1037–1044.

    Article  CAS  PubMed  Google Scholar 

  18. Rossetti L, Smith D, Shulman GI, et al.: Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 1987, 79:1510–1515.

    Article  CAS  PubMed  Google Scholar 

  19. Kosaka K, Kuzuya T, Akanuma Y, Hagura R: Increase in insulin response after treatment of overt maturity-onset diabetes is independent of the mode of treatment. Diabetologia 1980, 18:23–28.

    Article  CAS  PubMed  Google Scholar 

  20. Yki-Jarvinen H, Helve E, Koivisto VA: Hyperglycemia decreases glucose uptake in type I diabetes. Diabetes 1987, 36:892–896.

    Article  CAS  PubMed  Google Scholar 

  21. Most RS, Sinnock P: The epidemiology of lower extremity amputations in diabetic individuals. Diabetes Care 1983, 6:87–91.

    Article  CAS  PubMed  Google Scholar 

  22. Engerman RL, Kern TS: Progression of incipient diabetic retinopathy during good glycemic control. Diabetes 1987, 36:808–812.

    Article  CAS  PubMed  Google Scholar 

  23. Roy S, Sala R, Cagliero E, Lorenzi M: Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc Natl Acad Sci U S A 1990, 87:404–408.

    Article  CAS  PubMed  Google Scholar 

  24. Hammes HP, Klinzing I, Wiegand S, et al.: Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Invest Ophthalmol Vis Sci 1993, 34:2092–2096.

    CAS  PubMed  Google Scholar 

  25. Brownlee M: The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005, 54:1615–1625.

    Article  CAS  PubMed  Google Scholar 

  26. Nishikawa T, Edelstein D, Du XL, et al.: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000, 404:787–790.

    Article  CAS  PubMed  Google Scholar 

  27. Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996, 271:C1424–1437.

    CAS  PubMed  Google Scholar 

  28. Julius U, Drel VR, Grassler J, Obrosova IG: Nitrosylated proteins in monocytes as a new marker of oxidative-nitrosative stress in diabetic subjects with macroangiopathy. Exp Clin Endocrinol Diabetes 2009, 117:72–77.

    Article  CAS  PubMed  Google Scholar 

  29. Foury F, Hu J, Vanderstraeten S: Mitochondrial DNA mutators. Cell Mol Life Sci 2004, 61:2799–2811.

    Article  CAS  PubMed  Google Scholar 

  30. Kowluru RA: Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes 2003, 52:818–823.

    Article  CAS  PubMed  Google Scholar 

  31. Kowluru RA, Chakrabarti S, Chen S: Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kappaB) in the retina. Acta Diabetol 2004, 41:194–199.

    Article  CAS  PubMed  Google Scholar 

  32. Kowluru RA, Kanwar M, Kennedy A: Metabolic memory phenomenon and accumulation of peroxynitrite in retinal capillaries. Exp Diabetes Res 2007, 2007:21976.

    PubMed  Google Scholar 

  33. Ihnat MA, Thorpe JE, Kamat CD, et al.: Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling. Diabetologia 2007, 50:1523–1531.

    Article  CAS  PubMed  Google Scholar 

  34. Yerneni KK, Bai W, Khan BV, et al.: Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 1999, 48:855–864.

    Article  CAS  PubMed  Google Scholar 

  35. Beisswenger PJ, Howell SK, Nelson RG, et al.: Alpha-oxoaldehyde metabolism and diabetic complications. Biochem Soc Trans 2003, 31:1358–1363.

    Article  CAS  PubMed  Google Scholar 

  36. Goldin A, Beckman JA, Schmidt AM, Creager MA: Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006, 114:597–605.

    Article  CAS  PubMed  Google Scholar 

  37. Giardino I, Edelstein D, Brownlee M: Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest 1994, 94:110–117.

    Article  CAS  PubMed  Google Scholar 

  38. Shinohara M, Thornalley PJ, Giardino I, et al.: Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest 1998, 101:1142–1147.

    Article  CAS  PubMed  Google Scholar 

  39. McLellan AC, Thornalley PJ, Benn J, Sonksen PH: Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci (Lond) 1994, 87:21–29.

    CAS  Google Scholar 

  40. Charonis AS, Reger LA, Dege JE, et al.: Laminin alterations after in vitro nonenzymatic glycosylation. Diabetes 1990, 39:807–814.

    Article  CAS  PubMed  Google Scholar 

  41. Yu Y, Thorpe SR, Jenkins AJ, et al.: Advanced glycation end-products and methionine sulphoxide in skin collagen of patients with type 1 diabetes. Diabetologia 2006, 49:2488–2498.

    Article  CAS  PubMed  Google Scholar 

  42. Genuth S, Sun W, Cleary P, et al.: Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes 2005, 54:3103–3111.

    Article  CAS  PubMed  Google Scholar 

  43. Monnier VM, Bautista O, Kenny D, et al.: Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes 1999, 48:870–880.

    Google Scholar 

  44. Gerstein HC, Miller ME, Byington RP, et al.: Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008, 358:2545–2559.

    Article  CAS  PubMed  Google Scholar 

  45. Patel A, MacMahon S, Chalmers J, et al.: Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008, 358:2560–2572.

    Article  CAS  PubMed  Google Scholar 

  46. Duckworth W, Abraira C, Moritz T, et al.: Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009, 360:129–139.

    Article  CAS  PubMed  Google Scholar 

  47. Stamler J, Vaccaro O, Neaton JD, Wentworth D: Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993, 16:434–444.

    Article  CAS  PubMed  Google Scholar 

  48. Greenfield S, Billimek J, Pellegrini F, et al.: Comorbidity affects the relationship between glycemic control and cardiovascular outcomes in diabetes: a cohort study. Ann Intern Med 2009, 151:854–860.

    PubMed  Google Scholar 

  49. Reaven PD, Moritz TE, Schwenke DC, et al.: Intensive glucose-lowering therapy reduces cardiovascular disease events in veterans affairs diabetes trial participants with lower calcified coronary atherosclerosis. Diabetes 2009, 58:2642–2648.

    Article  CAS  PubMed  Google Scholar 

  50. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998, 317:703–713.

  51. •• Lind M, Oden A, Fahlen M, Eliasson B: The shape of the metabolic memory of HbA1c: re-analysing the DCCT with respect to time-dependent effects. Diabetologia 2010, 53:1093–1098. This report suggests that the most harmful effect of hyperglycemia on progression of retinopathy in T1DM initially increases but then declines after roughly 5 years. The salutary effect of reducing HbA1c accelerates with time and becomes greater in clinical practice. The authors argue that clinical trials should preferably be designed for long periods or include patients with low previous glycemic exposure to distinguish trial effects from those of metabolic memory.

    Article  CAS  PubMed  Google Scholar 

  52. DeSouza C, Fonseca V: Therapeutic targets to reduce cardiovascular disease in type 2 diabetes. Nat Rev Drug Discov 2009, 8:361–367.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasudevan A. Raghavan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, P., Chune, G.W. & Raghavan, V.A. Legacy Effects from DCCT and UKPDS: What They Mean and Implications for Future Diabetes Trials. Curr Atheroscler Rep 12, 432–439 (2010). https://doi.org/10.1007/s11883-010-0128-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-010-0128-1

Keywords

Navigation