Skip to main content

Advertisement

Log in

Hypo- and hyper-perfusion in MCI and AD identified by different ASL MRI sequences

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Arterial spin labeling (ASL) perfusion MRI has been increasingly used in Alzheimer's Disease (AD) research. However, ASL MRI sequences differ greatly in terms of arterial blood signal preparations and data acquisition strategies, both leading to a large difference of signal-to-noise ratio (SNR). It is of great translational importance to compare the several widely used ASL MRI sequences regarding sensitivity of ASL measured cerebral blood flow (CBF) for detecting the between-group difference across the AD continuum. To this end, this study compared three ASL MRI sequences in AD research, including the 2D Pulsed ASL (PASL), 3D Background Suppressed (BS) PASL, and 3D BS Pseudo-Continuous ASL (PCASL). We used data from 100 healthy and cognitively normal elderly control (NC) subjects, 75 patients with mild cognitive impairment (MCI), and 57 Alzheimer’s disease (AD) subjects from the AD neuroimaging initiative (ADNI). Both cross-sectional perfusion difference and perfusion versus clinical assessment correlations were examined. The major findings included: 3D PCASL sequence identified stronger patient versus control CBF/rCBF differences than 2D PASL and 3D PASL; MCI showed reduced CBF and CBF redistribution; CBF in orbito-frontal cortex presents a new U-shape change pattern from normal aging to MCI and to AD; 3D PCASL identified a negative rCBF to memory correlation while 2D PASL showed a positive correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

ADNI data are freely available from https://adni.loni.usc.edu/. ASLtbx is freely available from https://cfn.upenn.edu/zewang/ASLtbx.php and https://github.com/zewangnew/ASLtbx.

References

  • Alsop, D. C., Detre, J. A., & Grossman, M. (2000). Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Annals of Neurology, 47(1), 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Alsop, D. C., Casement, M., de Bazelaire, C., Fong, T., & Press, D. Z. (2008). Hippocampal hyperperfusion in Alzheimer’s disease. Neuroimage, 42(4), 1267–1274. https://doi.org/10.1016/j.neuroimage.2008.06.006

    Article  PubMed  Google Scholar 

  • Alsop, D. C., Dai, W., Grossman, M., & Detre, J. A. (2010). Arterial spin labeling blood flow MRI: Its role in the early characterization of Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD, 20(3), 871–880. https://doi.org/10.3233/JAD-2010-091699

    Article  PubMed  Google Scholar 

  • Alsop, D. C., Detre, J. A., Golay, X., Gunther, M., Hendrikse, J., Hernandez-Garcia, L., Lu, H., Macintosh, B. J., Parkes, L. M., Smits, M., van Osch, M. J., Wang, D. J., Wong, E. C., & Zaharchuk, G. (2014). Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic Resonance in Medicine. https://doi.org/10.1002/mrm.25197

    Article  PubMed  PubMed Central  Google Scholar 

  • Baron, J. C., Lebrun-Grandie, P., Collard, P., Crouzel, C., Mestelan, G., & Bousser, M. G. (1982). Noninvasive measurement of blood flow, oxygen consumption, and glucose utilization in the same brain regions in man by positron emission tomography: concise communication. Journal of Nuclear Medicine, 23(5), 391–399. http://www.ncbi.nlm.nih.gov/pubmed/6978932.

    CAS  PubMed  Google Scholar 

  • Binnewijzend, M. A., Kuijer, J. P., Benedictus, M. R., van der Flier, W. M., Wink, A. M., Wattjes, M. P., van Berckel, B. N., Scheltens, P., & Barkhof, F. (2013). Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology, 267(1), 221–230. https://doi.org/10.1148/radiol.12120928

    Article  PubMed  Google Scholar 

  • Camargo, A., & Wang, Z. (2022).Estimating Arterial Transit Time (ATT) From ASL MRI Acquired at A Single Post-Labeling-Delay Time 2022 Annual Meeting of the International Society of Magnetic Resonance in Medicine, London.

  • Camargo, A., Wang, Z., Alzheimer’s Disease Neuroimaging, I. (2021). Longitudinal cerebral blood flow changes in normal aging and the Alzheimer’s disease continuum identified by arterial spin labeling MRI. Journal of Alzheimer’s Disease, 81(4), 1727–1735. https://doi.org/10.3233/JAD-210116

    Article  CAS  PubMed  Google Scholar 

  • Chao, L. L., Pa, J., Duarte, A., Schuff, N., Weiner, M. W., Kramer, J. H., Miller, B. L., Freeman, K. M., & Johnson, J. K. (2009). Patterns of cerebral hypoperfusion in amnestic and dysexecutive MCI. Alzheimer Disease and Associated Disorder, 23(3), 245–252. https://doi.org/10.1097/WAD.0b013e318199ff46

    Article  Google Scholar 

  • Chelune, G. J., Bornstein, R. A., & Prifitera, A. (1990). The Wechsler memory scale—revised. Advances in Psychological Assessment. Boston, MA: Springer. https://doi.org/10.1007/978-1-4613-0555-2_3

    Chapter  Google Scholar 

  • Dai, W., Garcia, D., de Bazelaire, C., & Alsop, D. C. (2008). Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magnetic Resonance in Medicine, 60(6), 1488–1497. https://doi.org/10.1002/mrm.21790

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai, W., Lopez, O. L., Carmichael, O. T., Becker, J. T., Kuller, L. H., & Gach, H. M. (2009). Mild cognitive impairment and alzheimer disease: Patterns of altered cerebral blood flow at MR imaging. Radiology, 250(3), 856–866. https://doi.org/10.1148/radiol.2503080751

    Article  PubMed  PubMed Central  Google Scholar 

  • Detre, J. A., Leigh, J. S., Williams, D. S., & Koretsky, A. P. (1992). Perfusion imaging. Magnetic Resonance in Medicine, 23, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Detre, J. A., Wang, J., Wang, Z., & Rao, H. (2009). Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Current Opinion in Neurology, 22(4), 348–355. https://doi.org/10.1097/WCO.0b013e32832d9505

    Article  PubMed  Google Scholar 

  • Detre, J. A., Rao, H., Wang, D. J., Chen, Y. F., & Wang, Z. (2012). Applications of arterial spin labeled MRI in the brain. Journal of Magnetic Resonance Imaging, 35(5), 1026–1037.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeWitt, D. S., Yuan, X. Q., Becker, D. P., & Hayes, R. L. (1988). Simultaneous, quantitative measurement of local blood flow and glucose utilization in tissue samples in normal and injured feline brain. Brain Injury, 2(4), 291–303. http://www.ncbi.nlm.nih.gov/pubmed/3203175

    Article  CAS  PubMed  Google Scholar 

  • Dolui, S., Vidorreta, M., Wang, Z., Nasrallah, I. M., Alavi, A., Wolk, D. A., & Detre, J. A. (2017). Comparison of PASL, PCASL, and background-suppressed 3D PCASL in mild cognitive impairment. Hum Brain Mapp. https://doi.org/10.1002/hbm.23732

    Article  PubMed  PubMed Central  Google Scholar 

  • Du, A. T., Jahng, G. H., Hayasaka, S., Kramer, J. H., Rosen, H. J., Gorno-Tempini, M. L., Rankin, K. P., Miller, B. L., Weiner, M. W., & Schuff, N. (2006). Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology, 67(7), 1215–1220. https://doi.org/10.1212/01.wnl.0000238163.71349.78

    Article  CAS  PubMed  Google Scholar 

  • Duan, W., Zhou, G. D., Balachandrasekaran, A., Bhumkar, A. B., Boraste, P. B., Becker, J. T., Kuller, L. H., Lopez, O. L., Gach, H. M., & Dai, W. (2021). Cerebral blood flow predicts conversion of mild cognitive impairment into Alzheimer’s disease and cognitive decline: An arterial spin labeling follow-up study. Journal of Alzheimer’s Disease, 82(1), 293–305.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Seara, M. A., Wang, Z., Wang, J., Rao, H. Y., Guenther, M., Feinberg, D. A., & Detre, J. A. (2005). Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T. Magnetic Resonance in Medicine, 54(5), 1241–1247. https://doi.org/10.1002/mrm.20674

    Article  PubMed  Google Scholar 

  • Fortin, J.-P., Parker, D., Tunç, B., Watanabe, T., Elliott, M. A., Ruparel, K., Roalf, D. R., Satterthwaite, T. D., Gur, R. C., & Gur, R. E. (2017). Harmonization of multi-site diffusion tensor imaging data. NeuroImage, 161, 149–170.

    Article  PubMed  Google Scholar 

  • Furlow, T. W., Jr., Martin, R. M., & Harrison, L. E. (1983). Simultaneous measurement of local glucose utilization and blood flow in the rat brain: an autoradiographic method using two tracers labeled with carbon-14. Journal of Cerebral Blood Flow and Metabolism, 3(1), 62–66. https://doi.org/10.1038/jcbfm.1983.7

    Article  PubMed  Google Scholar 

  • Gunther, M., Oshio, K., & Feinberg, D. A. (2005). Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magnetic Resonance in Medicine, 54(2), 491–498. https://doi.org/10.1002/mrm.20580

    Article  PubMed  Google Scholar 

  • Gunther, M. (2007).Highly efficient accelerated acquisition of perfusion inflow series by cycled arterial spin labeling Annual Meeting of International Society of Magnetic Resonance in Medicine, Berlin.

  • Haller, S., Zaharchuk, G., Thomas, D. L., Lovblad, K.-O., Barkhof, F., & Golay, X. (2016). Arterial spin labeling perfusion of the brain: Emerging clinical applications. Radiology, 281(2), 337–356.

    Article  PubMed  Google Scholar 

  • Hu, W. T., Wang, Z., Lee, V. M., Trojanowski, J. Q., Detre, J. A., & Grossman, M. (2010). Distinct cerebral perfusion patterns in FTLD and AD. Neurology, 75(10), 881–888. https://doi.org/10.1212/WNL.0b013e3181f11e35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs, H. I., Hopkins, D. A., Mayrhofer, H. C., Bruner, E., van Leeuwen, F. W., Raaijmakers, W., & Schmahmann, J. D. (2018). The cerebellum in Alzheimer’s disease: Evaluating its role in cognitive decline. Brain : A Journal of Neurology, 141(1), 37–47.

    Article  PubMed  Google Scholar 

  • Jahn, H. (2013). Memory loss in Alzheimer’s disease. Dialogues in Clinical Neuroscience, 15(4), 445–454. https://doi.org/10.31887/DCNS.2013.15.4/hjahn

    Article  PubMed  PubMed Central  Google Scholar 

  • Jezzard, P., Chappell, M. A., & Okell, T. W. (2018). Arterial spin labeling for the measurement of cerebral perfusion and angiography. Journal of Cerebral Blood Flow and Metabolism, 38(4), 603–626. https://doi.org/10.1177/0271678X17743240

    Article  PubMed  Google Scholar 

  • Joris, P. J., Mensink, R. P., Adam, T. C., & Liu, T. T. (2018). Cerebral blood flow measurements in adults: A review on the effects of dietary factors and exercise. Nutrients, 10(5), 530.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landau, S. M., Mintun, M. A., Joshi, A. D., Koeppe, R. A., Petersen, R. C., Aisen, P. S., Weiner, M. W., Jagust, W. J., Initiative, A., & s. D. N. (2012). Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Annals of Neurology, 72(4), 578–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leeuwis, A. E., Benedictus, M. R., Kuijer, J. P., Binnewijzend, M. A., Hooghiemstra, A. M., Verfaillie, S. C., Koene, T., Scheltens, P., Barkhof, F., & Prins, N. D. (2017). Lower cerebral blood flow is associated with impairment in multiple cognitive domains in Alzheimer’s disease. Alzheimer’s and Dementia, 13(5), 531–540.

    Article  PubMed  Google Scholar 

  • Leeuwis, A. E., Smith, L. A., Melbourne, A., Hughes, A. D., Richards, M., Prins, N. D., Sokolska, M., Atkinson, D., Tillin, T., & Jäger, H. R. (2018). Cerebral blood flow and cognitive functioning in a community-based, multi-ethnic cohort: The SABRE study. Front Aging Neurosci, 10, 279.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Dolui, S., Xie, D. F., Wang, Z., Alzheimer’s Disease Neuroimaging, I. (2018). Priors-guided slice-wise adaptive outlier cleaning for arterial spin labeling perfusion MRI. Journal of Neuroscience Methods, 307, 248–253. https://doi.org/10.1016/j.jneumeth.2018.06.007

    Article  PubMed  Google Scholar 

  • Liu, Z. M., Schmidt, K. F., Sicard, K. M., & Duong, T. Q. (2004). Imaging oxygen consumption in forepaw somatosensory stimulation in rats under isoflurane anesthesia. Magnetic resonance in medicine, 52(2), 277–285. https://doi.org/10.1002/mrm.20148

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Zhu, X., Feinberg, D., Guenther, M., Gregori, J., Weiner, M. W., & Schuff, N. (2012). Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics. Magnetic Resonance in Medicine, 68(3), 912–922.

    Article  PubMed  Google Scholar 

  • Lövblad, K.-O., Montandon, M.-L., Viallon, M., Rodriguez, C., Toma, S., Golay, X., Giannakopoulos, P., & Haller, S. (2015). Arterial spin-labeling parameters influence signal variability and estimated regional relative cerebral blood flow in normal aging and mild cognitive impairment: FAIR versus PICORE techniques. American Journal of Neuroradiology, 36(7), 1231–1236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luis Hernandez-Garcia, V. A., Dai, W., Fernandez-Seara, M. A., Guo, J., Guenther, M., Schollenberger, J., Madhuranthakam, A. J., Mutsaerts, H., Petr, J., Qin, Q., Suzuki, Y., Taso, M., Thomas, D. L., van Osch, M. J. P., Woods, J. G., Zhao, M. Y., Yan, L., Wang, Z., Zhao, L., … ISMRM Perfusion Study Group. (2022). Recent technical developments in ASL: A review of the state of the art. Magnetic Resonance in Medicine, 88(5), 2021–2042. https://doi.org/10.1002/mrm.29381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacIntosh, B. J., Filippini, N., Chappell, M. A., Woolrich, M. W., Mackay, C. E., & Jezzard, P. (2010). Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magnetic Resonance in Medicine, 63(3), 641–647.

    Article  PubMed  Google Scholar 

  • Musiek, E. S., Chen, Y., Korczykowski, M., Saboury, B., Martinez, P. M., Reddin, J. S., Alavi, A., Kimberg, D. Y., Wolk, D. A., Julin, P., Newberg, A. B., Arnold, S. E., & Detre, J. A. (2012). Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 8(1), 51–59. https://doi.org/10.1016/j.jalz.2011.06.003

    Article  Google Scholar 

  • Mutsaerts, H. J., Steketee, R. M., Heijtel, D. F., Kuijer, J. P., van Osch, M. J., Majoie, C. B., Smits, M., & Nederveen, A. J. (2014). Inter-vendor reproducibility of pseudo-continuous arterial spin labeling at 3 Tesla. PLoS ONE, 9(8), e104108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutsaerts, H. J., van Osch, M. J., Zelaya, F. O., Wang, D. J., Nordhoy, W., Wang, Y., Wastling, S., Fernandez-Seara, M. A., Petersen, E. T., Pizzini, F. B., Fallatah, S., Hendrikse, J., Geier, O., Gunther, M., Golay, X., Nederveen, A. J., Bjornerud, A., & Groote, I. R. (2015). Multi-vendor reliability of arterial spin labeling perfusion MRI using a near-identical sequence: Implications for multi-center studies. NeuroImage, 113, 143–152. https://doi.org/10.1016/j.neuroimage.2015.03.043

    Article  PubMed  Google Scholar 

  • Nanjappa, M., Troalen, T., Pfeuffer, J., Maréchal, B., Hilbert, T., Kober, T., Schneider, F. C., Croisille, P., & Viallon, M. (2021). Comparison of 2D simultaneous multi-slice and 3D GRASE readout schemes for pseudo-continuous arterial spin labeling of cerebral perfusion at 3 T. Magnetic Resonance Materials in Physics, Biology and Medicine, 34(3), 437–450.

    Article  Google Scholar 

  • Qin, Q., Alsop, D. C., Bolar, D. S., Hernandez-Garcia, L., Meakin, J., Liu, D., Nayak, K. S., Schmid, S., van Osch, M. J., & Wong, E. C. (2022). Velocity-selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation. Magnetic Resonance in Medicine, 88(4), 1528–1547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin Qin, D. C. A., Bolar, D. S., Hernandez-Garcia, L., Meakin, J., Liu, D., Nayak, K. S., Schmid, S., van Osch, M. J. P., Wong, E. C., Woods, J. G., Zaharchuk, G., Zhao, M. Y., Zun, Z., Guo, J., ISMRM Perfusion Study Group. (2022). Velocity-selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation. Magnetic Resonance in Medicine. https://doi.org/10.1002/mrm.29371

    Article  PubMed  PubMed Central  Google Scholar 

  • Raichle, M. E. (1998). Behind the scenes of functional brain imaging: a historical and physiological perspective. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 765–772. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9448239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solis, E., Jr., Hascup, K. N., & Hascup, E. R. (2020). Alzheimer’s disease: The link between amyloid-β and neurovascular dysfunction. Journal of Alzheimer’s Disease, 76(4), 1179–1198.

    Article  CAS  PubMed  Google Scholar 

  • Steketee, R. M., Mutsaerts, H. J., Bron, E. E., Van Osch, M. J., Majoie, C. B., Van Der Lugt, A., Nederveen, A. J., & Smits, M. (2015). Quantitative functional arterial spin labeling (fASL) MRI–sensitivity and reproducibility of regional CBF changes using pseudo-continuous ASL product sequences. PLoS ONE, 10(7), e0132929.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stillman, C. M., Jakicic, J., Rogers, R., Alfini, A. J., Smith, J. C., Watt, J., Kang, C., & Erickson, K. I. (2021). Changes in cerebral perfusion following a 12-month exercise and diet intervention. Psychophysiology, 58(7), e13589.

    Article  PubMed  Google Scholar 

  • Sun, M., Wang, Y.-L., Li, R., Jiang, J., Zhang, Y., Li, W., Zhang, Y., Jia, Z., Chappell, M., & Xu, J. (2022). Potential diagnostic applications of multi-delay arterial spin labeling in early Alzheimer’s disease: The Chinese imaging, biomarkers, and lifestyle study. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.934471

  • Swinford CG, Risacher SL, Wu YC, Apostolova LG, Gao S, Bice PJ, Saykin AJ. (2022). Altered cerebral blood flow in older adults with Alzheimer's disease: a systematic review. Brain Imaging and Behaviorhttps://doi.org/10.1007/s11682-022-00750-6

  • Telischak, N. A., Detre, J. A., & Zaharchuk, G. (2015). Arterial spin labeling MRI: Clinical applications in the brain. Journal of Magnetic Resonance Imaging, 41(5), 1165–1180.

    Article  PubMed  Google Scholar 

  • Tsujikawa, T., Kimura, H., Matsuda, T., Fujiwara, Y., Isozaki, M., Kikuta, K.-I., & Okazawa, H. (2016). Arterial transit time mapping obtained by pulsed continuous 3D ASL imaging with multiple post-label delay acquisitions: Comparative study with PET-CBF in patients with chronic occlusive cerebrovascular disease. PLoS ONE, 11(6), e0156005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vestergaard, M. B., Lindberg, U., Aachmann-Andersen, N. J., Lisbjerg, K., Christensen, S. J., Law, I., Rasmussen, P., Olsen, N. V., & Larsson, H. B. (2016). Acute hypoxia increases the cerebral metabolic rate - a magnetic resonance imaging study. Journal of Cerebral Blood Flow and Metabolism, 36(6), 1046–1058. https://doi.org/10.1177/0271678X15606460

    Article  CAS  PubMed  Google Scholar 

  • Vidorreta, M., Wang, Z., Rodriguez, I., Pastor, M. A., Detre, J. A., & Fernandez-Seara, M. A. (2012). Nov 7). Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences. NeuroImage, 66C, 662–671. https://doi.org/10.1016/j.neuroimage.2012.10.087

    Article  Google Scholar 

  • Vidorreta, M., Balteau, E., Wang, Z., De Vita, E., Pastor, M. A., Thomas, D. L., Detre, J. A., & Fernandez-Seara, M. A. (2014). Evaluation of segmented 3D acquisition schemes for whole-brain high-resolution arterial spin labeling at 3 T. NMR in Biomedicine, 27(11), 1387–1396. https://doi.org/10.1002/nbm.3201

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidorreta, M., Wang, Z., Chang, Y. V., Wolk, D. A., Fernandez-Seara, M. A., & Detre, J. A. (2017). Whole-brain background-suppressed pCASL MRI with 1D-accelerated 3D RARE Stack-Of-Spirals readout. PLoS One, 12(8), e0183762. https://doi.org/10.1371/journal.pone.0183762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z. (2012). Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations. Magnetic Resonance Imaging, 30(10), 1409–1415. https://doi.org/10.1016/j.mri.2012.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z. (2014). Characterizing early Alzheimer’s disease and disease progression using hippocampal volume and arterial spin labeling perfusion MRI. Journal of Alzheimer’s Disease, 42, S495–S502. https://doi.org/10.3233/Jad-141419

    Article  PubMed  Google Scholar 

  • Wang, Z. (2022). Arterial spin labeling perfusion MRI signal processing through traditional methods and machine learning. Investigative Magnetic Resoance Imaging, 26(4), 220–228. https://doi.org/10.13104/imri.2022.26.4.220

    Article  Google Scholar 

  • Wang, Z., Aguirre, G. K., Rao, H., Wang, J., Fernández-Seara, M. A., Childress, A. R., & Detre, J. A. (2008). Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magnetic Resonance Imaging, 26(2), 261–269. PMC2268990.

    Article  PubMed  Google Scholar 

  • Wells, J. A., Lythgoe, M. F., Gadian, D. G., Ordidge, R. J., & Thomas, D. L. (2010). In vivo Hadamard encoded continuous arterial spin labeling (H-CASL). Magnetic Resonance in Medicine, 63(4), 1111–1118. https://doi.org/10.1002/mrm.22266

    Article  PubMed  Google Scholar 

  • Wolk, D. A., & Detre, J. A. (2012). Arterial spin labeling MRI: an emerging biomarker for Alzheimer’s disease and other neurodegenerative conditions [Research Support, N.I.H., Extramural]. Current Opinion in Neurology, 25(4), 421–428. https://doi.org/10.1097/WCO.0b013e328354ff0a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, W. C., Fernandez-Seara, M., Detre, J. A., Wehrli, F. W., & Wang, J. (2007). A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magnetic Resonance in Medicine, 58(5), 1020–1027. https://doi.org/10.1002/mrm.21403

    Article  PubMed  Google Scholar 

  • Xu, G., Rowley, H. A., Wu, G., Alsop, D. C., Shankaranarayanan, A., Dowling, M., Christian, B. T., Oakes, T. R., & Johnson, S. C. (2010). Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer’s disease. NMR Biomed, 23(3), 286–293. https://doi.org/10.1002/nbm.1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ze Wang, S. R. D., Xie, S. X., Arnold, S. E., Detre, J. A., Wolk, D. A., for the Alzheimer’s Disease Neuroimaging Initiative. (2013). Arterial spin labeled MRI in prodromal Alzheimer’s disease: A multi-site study. Neuroimage: Clinical, 2, 630–636.

    Article  PubMed  Google Scholar 

  • Zlokovic, B. V. (2005). Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends in Neuroscience, 28(4), 202–208. https://doi.org/10.1016/j.tins.2005.02.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Data collection and sharing for this project were funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuroimaging at the University of Southern California.

Funding

This work was supported by NIH grants: R01AG060054, R01AG070227, R01EB031080-01A1, R21AG082345, P41EB029460-01A1, 1UL1TR003098.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

AC downloaded the data, analyzed, and interpreted the data, and wrote the initial version of the manuscript. ZW designed the study, interpreted the results, wrote the manuscript.

Corresponding author

Correspondence to Ze Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Subject recruitment and data acquisition were approved by the Internal Review Boards for the parent ADNI project. All human subjects provided written consent forms before participating the ADNI study. Data re-analysis for this study was approved by Internal Review Board of University of Maryland Baltimore.

Competing interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 779 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, A., Wang, Z. & for the Alzheimer’s Disease Neuroimaging Initiative. Hypo- and hyper-perfusion in MCI and AD identified by different ASL MRI sequences. Brain Imaging and Behavior 17, 306–319 (2023). https://doi.org/10.1007/s11682-023-00764-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-023-00764-8

Keywords

Navigation