Skip to main content
Log in

Specific cerebellar and cortical degeneration correlates with ataxia severity in spinocerebellar ataxia type 7

  • Brief Communication
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder that is accompanied by loss of motor control and macular degeneration. Previous studies have shown cerebellar and pons atrophy as well as functional connectivity changes across the whole brain. Although different MRI modalities have been used to study the degenerative process, little is known about the relationship between the motor symptoms and cerebral atrophy. Twenty-four patients with molecular diagnosis of SCA7 where invited to participate in this study. Ataxia severity was evaluated using the scale for the assessment and rating of ataxia (SARA). Structural magnetic resonance imaging (MRI) brain images were used to obtain the grey matter volume of each participant. As expected, we found a significant negative correlation between the SARA score and the grey matter volume in distinct regions of the cerebellum in the patient group. Additionally, we found significant correlations between the ataxia degree and the degeneration of specific cortical areas in these patients. These findings provide a better understanding of the relationship between gray matter atrophy and ataxia related symptoms that result from the SCA7 mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Ackermann, H., & Riecker, A. (2004). The contribution of the insula to motor aspects of speech production: a review and a hypothesis. Brain and Language, 89(2), 320–328. doi:10.1016/S0093-934X(03)00347-X.

    Article  PubMed  Google Scholar 

  • Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6(6), 823–829. doi:10.1093/cercor/6.6.823.

    Article  CAS  PubMed  Google Scholar 

  • Alcauter, S., Barrios, F. A., Díaz, R., & Fernández-Ruiz, J. (2011). Gray and white matter alterations in spinocerebellar ataxia type 7: an in vivo DTI and VBM study. NeuroImage, 55(1), 1–7. doi:10.1016/j.neuroimage.2010.12.014.

    Article  CAS  PubMed  Google Scholar 

  • Allman, J. M., Hakeem, A., Erwin, J. M., Nimchinsky, E., & Hof, P. (2006). The anterior cingulate cortex. Annals of the New York Academy of Sciences, 935(1), 107–117. doi:10.1111/j.1749-6632.2001.tb03476.x.

    Article  Google Scholar 

  • Aminoff, E. M., Kveraga, K., & Bar, M. (2013). The role of the parahippocampal cortex in cognition. Trends in Cognitive Sciences, 17(8), 379–390. doi:10.1016/j.tics.2013.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115–116. doi:10.1038/nn1003.

    Article  CAS  PubMed  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—the methods. NeuroImage, 11(6 Pt 1), 805–821. doi:10.1006/nimg.2000.0582.

    Article  CAS  PubMed  Google Scholar 

  • Bang, O. Y., Lee, P. H., Kim, S. Y., Kim, H. J., & Huh, K. (2004). Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 75(10), 1452–1456. doi:10.1136/jnnp.2003.029819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohbot, V. D., Kalina, M., Stepankova, K., Spackova, N., Petrides, M., & Nadel, L. (1998). Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex. Neuropsychologia, 36(11), 1217–1238. doi:10.1016/S0028-3932(97)00161-9.

    Article  CAS  PubMed  Google Scholar 

  • Cerliani, L., Thomas, R. M., Jbabdi, S., Siero, J. C. W., Nanetti, L., Crippa, A., & Keysers, C. (2012). Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex. Human Brain Mapping, 33(9), 2005–2034. doi:10.1002/hbm.21338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Costafreda, S. G., Fu, C. H. Y., Lee, L., Everitt, B., Brammer, M. J., & David, A. S. (2006). A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus. Human Brain Mapping, 27(10), 799–810. doi:10.1002/hbm.20221.

    Article  PubMed  Google Scholar 

  • Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Review article. Brain, 118(1), 279–306. doi:10.1093/brain/118.1.279.

    Article  PubMed  Google Scholar 

  • Döhlinger, S., Hauser, T.-K., Borkert, J., Luft, A. R., & Schulz, J. B. (2008). Magnetic resonance imaging in spinocerebellar ataxias. Cerebellum (London, England), 7(2), 204–214. doi:10.1007/s12311-008-0025-0.

    Article  Google Scholar 

  • Freedman, M. (1998). Orbitofrontal function, object alternation and perseveration. Cerebral Cortex, 8(1), 18–27. doi:10.1093/cercor/8.1.18.

    Article  CAS  PubMed  Google Scholar 

  • Garden, G. A., & La Spada, A. R. (2008). Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum (London, England), 7(2), 138–149. doi:10.1007/s12311-008-0027-y.

    Article  CAS  Google Scholar 

  • Goel, G., Pal, P. K., Ravishankar, S., Venkatasubramanian, G., Jayakumar, P. N., Krishna, N., & Jain, S. (2011). Gray matter volume deficits in spinocerebellar ataxia: an optimized voxel based morphometric study. Parkinsonism & Related Disorders, 17(7), 521–527. doi:10.1016/j.parkreldis.2011.04.008.

    Article  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2002). A voxel-based morphometric study of ageing in 465 normal adult human brains. In 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002. (p. II_5_1–II_5_16). IEEE. 10.1109/SSBI.2002.1233974.

  • Hayasaka, S., & Nichols, T. E. (2004). Combining voxel intensity and cluster extent with permutation test framework. NeuroImage, 23(1), 54–63. doi:10.1016/j.neuroimage.2004.04.035.

    Article  PubMed  Google Scholar 

  • Hernandez-Castillo, C. R., Alcauter, S., Galvez, V., Barrios, F. A., Yescas, P., Ochoa, A., & Fernandez-Ruiz, J. (2013). Disruption of visual and motor connectivity in spinocerebellar ataxia type 7. Movement Disorders, 28(12), 1708–1716. doi:10.1002/mds.25618.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Castillo, C. R., Galvez, V., Morgado-Valle, C., & Fernandez-Ruiz, J. (2014). Whole-brain connectivity analysis and classification of spinocerebellar ataxia type 7 by functional MRI. Cerebellum & Ataxias, 1(1), 2. doi:10.1186/2053-8871-1-2.

    Article  Google Scholar 

  • Horton, L. C., Frosch, M. P., Vangel, M. G., Weigel-DiFranco, C., Berson, E. L., & Schmahmann, J. D. (2013). Spinocerebellar ataxia type 7: clinical course, phenotype-genotype correlations, and neuropathology. Cerebellum (London, England), 12(2), 176–193. doi:10.1007/s12311-012-0412-4.

    Article  Google Scholar 

  • Hugosson, T., Gränse, L., Ponjavic, V., & Andréasson, S. (2009). Macular dysfunction and morphology in spinocerebellar ataxia type 7 (SCA 7). Ophthalmic Genetics, 30(1), 1–6. doi:10.1080/13816810802454081.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, K., Watanabe, M., Yoshizawa, K., Fujita, T., Iwamoto, H., Yoshizawa, T., & Mizusawa, H. (1999). Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). Journal of Neurology, Neurosurgery & Psychiatry, 67(1), 86–89. doi:10.1136/jnnp.67.1.86.

    Article  CAS  Google Scholar 

  • Jakab, A., Molnár, P. P., Bogner, P., Béres, M., & Berényi, E. L. (2012). Connectivity-based parcellation reveals interhemispheric differences in the insula. Brain Topography, 25(3), 264–271. doi:10.1007/s10548-011-0205-y.

    Article  PubMed  Google Scholar 

  • Lasek, K., Lencer, R., Gaser, C., Hagenah, J., Walter, U., Wolters, A., & Binkofski, F. (2006). Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain: A Journal of Neurology, 129(Pt 9), 2341–2352. doi:10.1093/brain/awl148.

    Article  CAS  Google Scholar 

  • Maguire, E. A., Valentine, E. R., Wilding, J. M., & Kapur, N. (2003). Routes to remembering: the brains behind superior memory. Nature Neuroscience, 6(1), 90–95. doi:10.1038/nn988.

    Article  CAS  PubMed  Google Scholar 

  • Martin, J.-J. (2012). Spinocerebellar ataxia type 7. Handbook of Clinical Neurology, 103, 475–491. doi:10.1016/B978-0-444-51892-7.00030-9.

    Article  PubMed  Google Scholar 

  • Masciullo, M., Modoni, A., Pomponi, M. G., Tartaglione, T., Falsini, B., Tonali, P., & Silvestri, G. (2007). Evidence of white matter involvement in SCA 7. Journal of Neurology, 254(4), 536–538. doi:10.1007/s00415-006-0274-0.

    Article  PubMed  Google Scholar 

  • Mercadillo, R. E., Galvez, V., Díaz, R., Hernández-Castillo, C. R., Campos-Romo, A., Boll, M.-C., & Fernandez-Ruiz, J. (2014). Parahippocampal gray matter alterations in Spinocerebellar Ataxia Type 2 identified by voxel based morphometry. Journal of the Neurological Sciences, 347(1-2), 50–58. doi:10.1016/j.jns.2014.09.018.

    Article  PubMed  Google Scholar 

  • Michalik, A., Martin, J.-J., & Van Broeckhoven, C. (2004). Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. European Journal of Human Genetics, 12(1), 2–15. doi:10.1038/sj.ejhg.5201108.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (1998). The cerebellum: an overview. Trends in Cognitive Sciences, 2(9), 305–306.

    Article  CAS  PubMed  Google Scholar 

  • Miller, R. C., Tewari, A., Miller, J. A., Garbern, J., & Van Stavern, G. P. (2009). Neuro-ophthalmologic features of spinocerebellar ataxia type 7. Journal of Neuro-Ophthalmology, 29(3), 180–186.

    Article  PubMed  Google Scholar 

  • Paus, T., et al. (2001). Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2(6), 417–424.

    Article  CAS  PubMed  Google Scholar 

  • Raz, N. (1997). Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cerebral Cortex, 7(3), 268–282. doi:10.1093/cercor/7.3.268.

    Article  CAS  PubMed  Google Scholar 

  • Reetz, K., Lencer, R., Hagenah, J. M., Gaser, C., Tadic, V., Walter, U., & Binkofski, F. (2010). Structural changes associated with progression of motor deficits in spinocerebellar ataxia 17. Cerebellum (London, England), 9(2), 210–217. doi:10.1007/s12311-009-0150-4.

    Article  Google Scholar 

  • Reetz, K., Kleiman, A., Klein, C., Lencer, R., Zuehlke, C., Brockmann, K., & Binkofski, F. (2011). CAG repeats determine brain atrophy in spinocerebellar ataxia 17: a VBM study. PLoS One, 6(1), e15125. doi:10.1371/journal.pone.0015125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S. R., Busa, E., & Fischl, B. (2004). Thinning of the cerebral cortex in aging. Cerebral Cortex, 14(7), 721–730. doi:10.1093/cercor/bhh032.

    Article  PubMed  Google Scholar 

  • Schmahmann, J. D. (2014). Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences. Retrieved from http://neuro.psychiatryonline.org/doi/abs/10.1176/jnp.16.3.367.

  • Schmitz-Hübsch, T., du Montcel, S. T., Baliko, L., Berciano, J., Boesch, S., Depondt, C., & Fancellu, R. (2006). Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology, 66(11), 1717–1720. doi:10.1212/01.wnl.0000219042.60538.92.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–S219. doi:10.1016/j.neuroimage.2004.07.051.

    Article  PubMed  Google Scholar 

  • Swick, D., Ashley, V., & Turken, A. U. (2008). Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience, 9(1), 102. doi:10.1186/1471-2202-9-102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szatkowska, I., Szymańska, O., Bojarski, P., & Grabowska, A. (2007). Cognitive inhibition in patients with medial orbitofrontal damage. Experimental Brain Research, 181(1), 109–115. doi:10.1007/s00221-007-0906-3.

    Article  PubMed  Google Scholar 

  • Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381–397. doi:10.1016/j.neuroimage.2014.01.060.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by: Universidad Nacional Autonoma de Mexico (PAPIIT IN221413) and Consejo Nacional de Ciencia y Tecnologia (220871) grants to Juan Fernandez Ruiz, as well as the National Ataxia Foundation (USA) grant to Carlos R. Hernandez-Castillo.

Conflict of Interest

Carlos R. Hernandez-Castillo, Victor Galvez, Rosalinda Diaz, and Juan Fernandez-Ruiz declare that they have no conflicts of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Fernandez-Ruiz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

supplementary Fig. 1

(JPEG 281 kb)

supplementary table 1

(PDF 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Castillo, C.R., Galvez, V., Diaz, R. et al. Specific cerebellar and cortical degeneration correlates with ataxia severity in spinocerebellar ataxia type 7. Brain Imaging and Behavior 10, 252–257 (2016). https://doi.org/10.1007/s11682-015-9389-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9389-1

Keywords

Navigation