Skip to main content
Log in

Qushi Huayu Decoction (祛湿化瘀方) inhibits protein and gene expression of cathepsin B in HepG2 Cells induced by free fatty acids

  • Experimental Research
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To study the experimental efficacy of Qushi Huayu Decoction (祛湿化瘀方,QHD) on, protein and gene expression of cathepsin B (ctsb) in HepG2 cells induced by free fatty acids (FFAs).

Methods

The model of HepG2 steatosis and tumor necrosis factor-α (TNF-α) secretion was induced by long-chain FFAs. HepG2 cells were divided into 4 groups: control group (group C), model group (group M), low-dose QHD group (group L) and high-dose QHD group (group H). Long-chain FFAs were added to groups M, L and H. The 10% blank-control serum was added to group C and M, while 5% and 10% QHD-containing sera were added to group L and H, respectively. The levels of serum TNF-α and cellular triglyceride (TG) were detected. Cellular p-IκB and ctsb expression were detected using Western blot and PCR. The expression and distribution of ctsb were observed by immunofluorescence.

Results

After incubating with FFA for 24 h, TG deposition in HepG2, TNF-α content in cell supernatant, the protein expression of cellular ctsb and P-IκB, as well as mRNA expression of ctsb increased markedly in group M compared with group C (P<0.05, P<0.01). Compared with group M, TG deposition, the expression of cellular ctsb, P-IκB and ctsb mRNA in groups L and H, as well as TNF-α content in group H, decreased significantly (P<0.05). Cell immunochemical fluorescence studies showed that ctsb was released from lysosomes and distributed in the cytoplasm extensively and diffusedly after being stimulated with FFA. In this study, these above-mentioned changes were inhibited markedly in groups L and H.

Conclusion

QHD might have a direct inhibitory effect on the ctsb target in the FFA-ctsb-TNFα pathway of hepatic lipotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feng Q, Zhang H, HU YY, Liu CH, Liu P. Effect of Qushi Huayu Decoction on prevention and treatment of fatty liver induced by high-fat diet in rats. Chin J Integr Tradit West Med Liver Dis (Chin) 2006;1:26–29.

    Google Scholar 

  2. Zhang H, Feng Q, Hu yy, Liu CH, Liu P. Prevention and treatment of “Qushi Huayu Decoction” on fatty liver of rats induced by carbon tetrachloride along with high-fat and low-protein diet. Shanghai J Tradit Chin Med (Chin) 2006;40:52–55.

    Google Scholar 

  3. Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology 2004;40:185–194.

    Article  CAS  PubMed  Google Scholar 

  4. Feldstein AE, Werneburg NW, Li Z, Bronk SF, Gores GJ. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am J Physiol Gastrointest Liver Physiol 2006;290:G1339–G1346.

    Article  CAS  PubMed  Google Scholar 

  5. Heider JG, Boyett RL. The picomole determination of free and total cholesterol in cells in culture. J Lipid Res 1978;19:514–518.

    CAS  PubMed  Google Scholar 

  6. Cheng Y, Ping J, Xu HD, Fu HJ, Zhou ZH. Synergestic effect of a novel oxymatrine-baicalin combination against HBV replication, alpha smooth muscle actin expression and type I collagen synthesis in vitro. World J Gastroenterol 2006;12:5153–5159.

    CAS  PubMed  Google Scholar 

  7. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002;346:1221–1231.

    Article  CAS  PubMed  Google Scholar 

  8. Neuschwander-Tetri B, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology 2003;37:1202–1219.

    Article  PubMed  Google Scholar 

  9. Adams LA, Angulo P. Treatment of non-alcoholic fatty liver disease. Postgrad Med J 2006;82:315–322.

    Article  CAS  PubMed  Google Scholar 

  10. Sherif. Nonalcoholic fatty liver disease and obesity. Nutrit Clin Pract 2007;22:1–10.

    Article  Google Scholar 

  11. Toledo FG, Sniderman AD, Kelley DE. Influence of hepatic steatosis (fatty liver) on severity and composition of dyslipidemia in type 2 diabetes. Diabetes Care 2006;29:1845–1850.

    Article  PubMed  Google Scholar 

  12. Day C, James O. Steatohepatitis: a tale of two “hits”? Gastroenterology 1998;114:842–845.

    Article  CAS  PubMed  Google Scholar 

  13. Michael W. Bradbury. Lipid metabolism and liver inflammation. hepatic fatty acid uptake: possible role in steatosis. Am J Physiol Gastrointest Liver Physiol 2006;290:G194–G198.

    Article  Google Scholar 

  14. Utzschneider KM, Kahn SE. The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metabol 2006;91:4753–4761.

    Article  CAS  Google Scholar 

  15. Schwabe RF, Brenner DA. Mechanisms of liver injury. TNF-α-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 2006;290:G583–G589.

    Article  CAS  PubMed  Google Scholar 

  16. Han D, Hanawa N, Saberi B, Kaplowitz N. Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am J Physiol Gastrointest Liver Physiol 2006;291:G1–G7.

    Article  CAS  PubMed  Google Scholar 

  17. Reddy JK, Rao MS. Lipid Metabolism and liver inflammation II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 2006;290:G852–G858.

    Article  CAS  PubMed  Google Scholar 

  18. Malhi H, Bronk SF, Werneburg MW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte Lipoapoptosis. J Biol Chem 2006;281:12093–12101.

    Article  CAS  PubMed  Google Scholar 

  19. Unger RH. Lipotoxic diseases. Annu Rev Med, 2002;53:319–336.

    Article  CAS  PubMed  Google Scholar 

  20. Unger RH. The physiology of cellular liporegulation. Annu Rev Physiol 2003;65:333–347.

    Article  CAS  PubMed  Google Scholar 

  21. Unger RH, Orci L. Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta 2002;1585:202–212.

    CAS  PubMed  Google Scholar 

  22. Unger RH. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab 2003;14:398–403.

    Article  CAS  PubMed  Google Scholar 

  23. Wullaert A, Loo GV, Heyninck K, Beyaert R. Hepatic tumor necrosis factor signaling and nuclear factor-B: effects on liver homeostasis and beyond. Endocr Rev 2007;28:365–386.

    Article  CAS  PubMed  Google Scholar 

  24. Werneburg N, Guicciardi ME, Yin XM, Gores GJ. TNF-alpha-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent. Am J Physiol Gastrointest Liver Physol 2004;287:G436–G443.

    Article  CAS  Google Scholar 

  25. Guicciardi ME, Miyoshi H, Bronk SF, Gores GJ. Cathepsin B knockout mice are resistant to tumor necrosis factor-α-mediated hepatocyte apoptosis and liver injury. Am J Pathol 2001;159:2045–2054.

    CAS  PubMed  Google Scholar 

  26. Liu H, Jones BE, Bradham C, Czaja MJ. Increased cytochrome P-450 2E1 expression sensitizes hepatocytes to c-Jun-mediated cell death from TNF-α. Am J Physiol Gastrointest Liver Physiol 2002;282:G257–G266.

    CAS  PubMed  Google Scholar 

  27. Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 2003;37:343–350.

    Article  CAS  PubMed  Google Scholar 

  28. Im E, Venkatakrishnan A, Kazlauskas A. Cathepsin B regulates the intrinsic angiogenic threshold of endothelial cells. Molecul Biol Cell 2005;16:3488–3500.

    Article  CAS  Google Scholar 

  29. Vasiljeva O, Papazoglou A, Krüger A, Brodoefel H, Korovin M, Deussing J, et al. Tumor cell-derived and macrophage-derived cathepsin B promotesprogression and lung metastasis of mammary cancer. Cancer Res 2006;66:5242–5250.

    Article  CAS  PubMed  Google Scholar 

  30. Baskin-Bey ES, Canbay A, Bronk SF, Werneburg N, Guicciardi ME, Nyberg SL, et al. Cathepsin B inactivation attenuates hepatocyte apoptosis and liver damage in steatotic livers after cold ischemia-warm reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2005;288:G396–G402.

    Article  CAS  PubMed  Google Scholar 

  31. Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, et al. Cathepsin B act as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 2001;153:999–1009.

    Article  CAS  PubMed  Google Scholar 

  32. Canbay A, Guicciardi ME, Higuchi H, Feldstein A, Bronk SF, Rydzewski R, et al. Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis. J Clin Invest 2003;112:152–159.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-yang Hu  (胡义扬).

Additional information

Supported by National Natural Science Foundation of China (No. 30672635), Shanghai Municipal Excellent Academic Discipline Lead-Investigator Project (No. 06XD14018), and Shanghai Leading Academic Discipline Project (Y0302)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Q., Cheng, Y., Hu, Yy. et al. Qushi Huayu Decoction (祛湿化瘀方) inhibits protein and gene expression of cathepsin B in HepG2 Cells induced by free fatty acids. Chin. J. Integr. Med. 16, 518–524 (2010). https://doi.org/10.1007/s11655-010-0568-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-010-0568-z

Keywords

Navigation