Skip to main content
Log in

Staurosporine induces chondrogenesis of chick embryo wing bud mesenchyme in monolayer cultures through canonical and non-canonical TGF-β pathways

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Staurosporine has been known to induce chondrogenesis in monolayer cultures of mesenchymal cells by dissolving actin stress fibers. The aim of this study was to further elucidate how the alteration of actin filaments by staurosporine induces chondrogenesis. Specifically, we examined whether the transforming growth factor (TGF)-β pathway is implicated. SB505124 strongly suppressed staurosporine-induced chondrogenesis without affecting the drug’s action on the actin cytoskeleton. Staurosporine increased the phosphorylation of TGF-β receptor I (TβRI) but had no significant effect on the expression levels of TGF-β1, TGF-β2, TGF-β3, TβRI, TβRII, and TβRIII. Phosphorylation of Smad2 and Smad3 was not increased by staurosporine. However, SB505124 almost completely suppressed the phosphorylation of Smad2 and Smad3. In addition, inhibition of Smad3 blocked staurosporine-induced chondrogenesis. Inhibition of Akt, p38 mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK) suppressed chondrogenesis induced by staurosporine. Phosphorylation of Akt, p38 MAPK, and JNK was increased by staurosporine. SB505124 reduced the phosphorylation of Akt and p38 MAPK, while it had no effect on the phosphorylation of JNK. The phosphorylation level of extracellular signal-regulated kinase (ERK) was not significantly affected by staurosporine. In addition, inhibition of ERK with PD98059 alone did not induce chondrogenesis. Taken together, these results suggest that staurosporine induces chondrogenesis through TGF-β pathways including canonical Smads and non-canonical Akt and p38 MAPK signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ahrens PB, Solursh M, Reiter RS (1977) Stage-related capacity for limb chondrogenesis in cell culture. Dev Biol 60:69–82

    Article  PubMed  CAS  Google Scholar 

  • Bang OS, Kim EJ, Chung JG, Lee SR, Park TK, Kang SS (2000) Association of focal adhesion kinase with fibronectin and paxillin is required for precartilage condensation of chick mesenchymal cells. Biochem Biophys Res Commun 278:522–529

    Article  PubMed  CAS  Google Scholar 

  • Bobick BE, Kulyk WM (2008) Regulation of cartilage formation and maturation by mitogen-activated protein kinase signaling. Birth Defects Res C Embryo Today 84:131–154

    Article  PubMed  CAS  Google Scholar 

  • Borge L, Lemare F, Demignot S, Adolphe M (1997) Restoration of the differentiated functions of serially passaged chondrocytes using staurosporine. In Vitro Cell Dev Biol Anim 33:703–709

    Article  PubMed  CAS  Google Scholar 

  • Chen JK, Hoshi H, McKeehan WL (1991) Stimulation of human arterial smooth muscle cell chondroitin sulfate proteoglycan synthesis by transforming growth factor-beta. In Vitro Cell Dev Biol 27:6–12

    Article  PubMed  CAS  Google Scholar 

  • Chimal-Monroy J, Diaz de Leon L (1997) Differential effects of transforming growth factors beta 1, beta 2, beta 3 and beta 5 on chondrogenesis in mouse limb bud mesenchymal cells. Int J Dev Biol 41:91–102

    PubMed  CAS  Google Scholar 

  • DaCosta BS, Major C, Laping NJ, Roberts AB (2004) SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65:744–752

    Article  Google Scholar 

  • DeLise AM, Fischer L, Tuan RS (2000) Cellular interactions and signaling in cartilage development. Osteoarthr Cartil 8:309–334

    Article  PubMed  CAS  Google Scholar 

  • Feng XH, Derynck R (2005) Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    Article  PubMed  CAS  Google Scholar 

  • Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H (2005) Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem 280:8343–8350

    Article  PubMed  CAS  Google Scholar 

  • Hellingman CA, Davidson EN, Koevoet W, Vitters EL, van den Berg WB, van Osch GJ, van der Kraan PM (2011) Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification. Tissue Eng Part A 17:1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Hoben GM, Athanasiou KA (2008) Use of staurosporine, an actin-modifying agent, to enhance fibrochondrocyte matrix gene expression and synthesis. Cell Tissue Res 334:469–476

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki M, Nakata K, Nakahara H, Nakase T, Kimura T, Kimata K, Caplan AI, Ono K (1993) Transforming growth factor-beta 1 stimulates chondrogenesis and inhibits osteogenesis in high density culture of periosteum-derived cells. Endocrinology 132:1603–1608

    PubMed  CAS  Google Scholar 

  • Jin EJ, Lee SY, Jung JC, Bang OS, Kang SS (2008) TGF-beta3 inhibits chondrogenesis of cultured chick leg bud mesenchymal cells via downregulation of connexin 43 and integrin beta4. J Cell Physiol 214:345–353

    Article  PubMed  CAS  Google Scholar 

  • Jin EJ, Park JH, Lee SY, Chun JS, Bang OS, Kang SS (2006) Wnt-5a is involved in TGF-beta3-stimulated chondrogenic differentiation of chick wing bud mesenchymal cells. Int J Biochem Cell Biol 38:183–195

    Article  PubMed  CAS  Google Scholar 

  • Jinnin M, Ihn H, Tamaki K (2006) Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-beta1-induced extracellular matrix expression. Mol Pharmacol 69:597–607

    Article  PubMed  CAS  Google Scholar 

  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Song K, Jin EJ, Sonn JK (2012a) Staurosporine and cytochalasin D induce chondrogenesis by regulation of actin dynamics in different way. Exp Mol Med 44:521–528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim MJ, Kim S, Kim Y, Jin EJ, Sonn JK (2012b) Inhibition of RhoA but not ROCK induces chondrogenesis of chick limb mesenchymal cells. Biochem Biophys Res Commun 418:500–505

    Article  PubMed  CAS  Google Scholar 

  • Kulyk WM, Rodgers BJ, Greer K, Kosher RA (1989) Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-beta. Dev Biol 135:424–430

    Article  PubMed  CAS  Google Scholar 

  • Langelier E, Suetterlin R, Hoemann CD, Aebi U, Buschmann MD (2000) The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin, and vimentin filaments. J Histochem Cytochem 48:1307–1320

    Article  PubMed  CAS  Google Scholar 

  • Lee CR, Grodzinsky AJ, Spector M (2003) Modulation of the contractile and biosynthetic activity of chondrocytes seeded in collagen-glycosaminoglycan matrices. Tissue Eng 9:27–36

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Kang JH, Choi SY, Kwon OS (2013) PKCδ as a regulator for TGF-β-stimulated connective tissue growth factor production in human hepatocarcinoma (HepG2) cells. Biochem J 456:109–118

    Article  PubMed  CAS  Google Scholar 

  • Leonard CM, Fuld HM, Frenz DA, Downie SA, Massague J, Newman SA (1991) Role of transforming growth factor-beta in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenenous TGF-beta and evidence for endogenous TGF-beta-like activity. Dev Biol 145:99–109

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Chen Y, Meng A, Feng X (2007) Termination of TGF-beta superfamily signaling through SMAD dephosphorylation—a functional genomic view. J Genet Genomics 34:1–9

    Article  PubMed  CAS  Google Scholar 

  • Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810

    Article  PubMed  CAS  Google Scholar 

  • Nakano H, Omura S (2009) Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine. J Antibiot (Tokyo) 62:17–26

    Article  CAS  Google Scholar 

  • Oh CD, Chang SH, Yoon YM, Lee SJ, Lee YS, Kang SS, Chun JS (2000) Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J Biol Chem 275:5613–5619

    Article  PubMed  CAS  Google Scholar 

  • Park EH, Kang SS, Lee YS, Kim SJ, Jin EJ, Tak EN, Sonn JK (2008) Integrity of the cortical actin ring is required for activation of the PI3K/Akt and p38 MAPK signaling pathways in redifferentiation of chondrocytes on chitosan. Cell Biol Int 32:1272–1278

    Article  PubMed  CAS  Google Scholar 

  • Re’em T, Kaminer-Israeli Y, Ruvinov E, Cohen S (2012) Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials 33:751–761

    Article  PubMed  Google Scholar 

  • Rottmar M, Mhanna R, Guimond-Lischer S, Vogel V, Zenobi-Wong M, Maniura-Weber K (2014) Interference with the contractile machinery of the fibroblastic chondrocyte cytoskeleton induces re-expression of the cartilage phenotype through involvement of PI3K, PKC and MAPKs. Exp Cell Res 320:175–187

    Article  PubMed  CAS  Google Scholar 

  • Schofield JN, Wolpert L (1990) Effect of TGF-beta 1, TGF-beta 2, and bFGF on chick cartilage and muscle cell differentiation. Exp Cell Res 191:144–148

    Article  PubMed  CAS  Google Scholar 

  • Seo HS, Serra R (2007) Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints. Dev Biol 310:304–316

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Seynaeve CM, Kazanietz MG, Blumberg PM, Sausville EA, Worland PJ (1994) Differential inhibition of protein kinase C isozymes by UCN-01, a staurosporine analogue. Mol Pharmacol 45:1207–1214

    PubMed  CAS  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  • Tsuiki H, Fukiishi Y, Kishi K (1996) Relation of TGF-beta 2 to inhibition of limb bud chondrogenesis by retinoid in rats. Teratology 54:191–197

    Article  PubMed  CAS  Google Scholar 

  • Wezeman FH (1998) Morphological foundations of precartilage development in mesenchyme. Microsc Res Tech 43:91–101

    Article  PubMed  CAS  Google Scholar 

  • Zanetti NC, Solursh M (1984) Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton. J Cell Biol 99:115–123

    Article  PubMed  CAS  Google Scholar 

  • Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19:128–139

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang X, Ziran N, Goater JJ, Schwarz EM, Puzas JE, Rosier RN, Zuscik M, Drissi H, O’Keefe RJ (2004) Primary murine limb bud mesenchymal cells in long-term culture complete chondrocyte differentiation: TGF-beta delays hypertrophy and PGE2 inhibits terminal differentiation. Bone 34:809–817

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2009749) and Kyungpook National University Research Fund, 2012.

Conflict of interest

Authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Kyung Sonn.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Kei, K. & Sonn, J.K. Staurosporine induces chondrogenesis of chick embryo wing bud mesenchyme in monolayer cultures through canonical and non-canonical TGF-β pathways. In Vitro Cell.Dev.Biol.-Animal 52, 120–129 (2016). https://doi.org/10.1007/s11626-015-9954-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-015-9954-3

Keywords

Navigation